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Topics of the first lesson

• Generalities about anisotropy

• Anisotropic elasticity - Part 1
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Generalities about anisotropy
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What is anisotropy?

In ancient Greek, άνισoς means different, unequal, and τρóπoς,
direction: anisotropy indicates hence the concept of not equivalent
directions.

In some old texts, anisotropy is sometimes called æolotropy, from
ancient Greek αὶóλoς, that means changeful.

In physics, an anisotropic phenomenon is a property changing with
the direction.

As a consequence, any two directions are not equivalent for such a
phenomenon, but if a couple or more directions can be found
whereon the phenomenon has the same behavior or value, then
these directions are called equivalent.
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Several physical properties can be anisotropic, because the medium
where they take place or propagate is anisotropic.

This is essentially due to the structure of the solid matter itself,
the most part of times organized, at a given scale, according to a
geometrical scheme.

Natural examples: crystals, several natural stones (e.g. sandstone
or marble), pack ice, bones, leaves or wood.

Artificial examples: laminated steel, composite materials, some
structures.
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Figure: Some examples of anisotropic materials or structures.
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We are interested here in the anisotropic behavior of elastic
materials and structures.

Several structural materials and biological tissues, not only wood
or bones, are actually anisotropic.

Different structures can be modeled, at a sufficiently large scale, as
composed by a fictitious, equivalent anisotropic material.

In modern industrial applications, like aircrafts and sport devices,
anisotropic composite materials reinforced by oriented fibres find
an increasing use.

In civil engineering, structural solutions making use of organized
schemes that induce a macroscopic anisotropic behavior (e.g.
stiffened plates, spatial trusses) are more and more used, because
of their capacity of bearing loads and covering large spans.
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There is hence a real need of understanding how modeling and
designing anisotropic structures and materials:

• on one side, for understanding the mechanical behavior of
natural structures, in botanics, bio-engineering, geophysics
and so on

• on the other side, for designing practical applications for
different fields of the human activity

This course is an introduction to the theory and design of
anisotropic elastic structures, with an insight on some advanced
topics in the matter.
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Mathematical consequences of anisotropy

The anisotropy of a physical property has some consequences on
its mathematical description:

• the effect of the dependence upon the direction must be
described → increase of the number of parameters to be used
for the description of the phenomenon.

• the eventual geometrical symmetries must be taken into
account, because they normally give some relations about the
parameters describing the property.
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Effects on algebraic operators

A physical property or phenomenon is mathematically described by
an operator; this can be simply a scalar, or a vector, or more
frequently a tensor of a given rank.

Often, when the property is isotropic, a simple scalar is sufficient
to completely describe it, but when the same property is
anisotropic, then a single scalar is no more sufficient, because the
dependence upon the direction must be taken into account.

Some examples...
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Thermal expansion

Strain ε produced by a change of temperature ∆t:

ε = ∆tα; (1)

Isotropic body: thermal expansion identical in all the directions →
a single coefficient α completely describes the phenomenon ⇒

α = αI (2)

Anisotropic body: α cannot be proportional to the identity1:

α = αijei ⊗ ej , αij = αji (3)

α: tensor of thermal expansion coefficients

1∀a, b, c ∈ V, the dyad (a⊗ b) is the second-rank tensor defined by the
operation (a⊗ b)c := b · c a.
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Ohm’s law

The Ohm’s law links the vectors of electric field E and current
density j:

j = µE; (4)

Isotropic conductor: one parameter is sufficient to fix the law, the

conductivity µ →
µ = µI (5)

j is parallel and proportional to E.

Anisotropic conductor: µ is not proportional to the identity and
the Ohm’s law depends hence upon a second-rank symmetric
tensor, the conductivity tensor µ:

µ = µijei ⊗ ej , µij = µji (6)

j changes with the direction; it is parallel to E only when this is
aligned with one of the principal directions of µ.
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Paramagnetism and diamagnetism

Be H the magnetic field intensity, L the intensity of magnetization
and B the magnetic induction; they are related by the law

B = µ0H + L, (7)

µ0 = 4π × 10−7 H/m : magnetic permeability of vacuum.

Isotropic medium:
L = µ0ΨH, (8)

Ψ : magnetic susceptibility of the medium, per unit of volume→

B = µH µ = µ0(1 + Ψ), (9)

µ: magnetic permeability of the medium. H, L and B are parallel.

13 / 77



Anisotropic medium:

L = µ0ΨH, B = µH. (10)

Ψ : magnetic susceptibility tensor

µ = µ0(I + Ψ): permeability tensor of the substance.

H, L and B are all parallel ⇐⇒ H is parallel to one of the
eigenvectors (principal axes) of Ψ .

A crystal is said to be paramagnetic along the principal directions
ei of Ψ if the corresponding eigenvalue Ψi > 0, diamagnetic if
Ψi < 0.

14 / 77



Thermal conductivity

Heat flux vector h:
h = −k∇t, (11)

k : thermal conductivity tensor.

Isotropic body:
k = kI (12)

k : thermal conductivity of the medium; h is parallel to ∇t
Anisotropic body:

k = kijei ⊗ ej , kij = kji (13)

h and ∇t are parallel ⇐⇒ ∇t is parallel to one of the
eigenvectors of k
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Piezoelectricity

Some crystals, thanks to their particular type of anisotropy,
develop an electric polarization if stressed by applied forces (direct
piezoelectric effect, from ancient Greek πιέζειν that means to
press):

P = Dσ, (14)

D : third-rank tensor of piezoelectric moduli.

By components:
Pi = Dijkσjk . (15)
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D describes also the converse piezoelectric effect or Lippmann’s
effect, that connects the strain to the electric field:

ε = DE : (16)

the electric current strains a piezoelectric crystal.

By components:
εjk = DijkEi . (17)

The 27 components of D are not all independent:

Dijk = Dikj , (18)

→ 18 independent piezoelectric moduli in the most general case;
their number can be further reduced taking into account for the
specific symmetries of a crystal.
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The Hooke’s law

The Hooke’s law is the linear relation between the stress, σ, and
strain, ε, in an elastic body

σ = Eε (19)

E is a fourth-rank tensor

Isotropic body: E is completely described by two invariant
parameters

Anisotropic body: 21 frame-dependent parameters are needed

This is just the subject of this course!
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A general consideration about anisotropic phenomena

From above it appears that anisotropy is an intrinsic quality of a
continuum, originated by the existence, or absence, of some
symmetries in the geometric distribution of the matter.

This is indeed a classical point of view, but it is important to
understand that the anisotropy of the continuum is just a
necessary, but not sufficient, condition for a given physical property
to be anisotropic on such a continuum.

Two factors, together, determine whether a property is or not
anisotropic: the intrinsic anisotropy of the continuum, i.e. its true
material symmetries, and the type of algebraic operator describing
a given physical property.

For the same continuum, it is possible that some physical
properties described by high order tensorial operators are
anisotropic, while some other ones, described by low order tensors,
are perfectly isotropic.
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A classical example: cubic symmetry in 3D or square symmetry in
planar media.

For such a material, the elastic behavior, described by a fourth-rank
tensor, is not isotropic, contrarily to what is often believed, but the
thermoelastic behavior, described by the second-rank tensor of
thermal expansion coefficients, is isotropic, as well as any other
physical property depending upon a second-rank tensor.

This fact has been condensed, in some way, in the empirical
Principle of Neumann, see further.

Finally, it is much more correct to talk about the anisotropy of a
physical property on a continuum rather than that of anisotropy of
the continuum itself.
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Some few words about geometrical symmetries

A body is said to have a symmetry when it can be brought to
coincidence with itself by a transformation, called a covering
operation, that moves any of his points. In such a case, we say
that the body allows the transformation.

Possible covering operations:

• rotation about an angle through a definite, or even indefinite,
angle; in this case the body possesses an axis of symmetry;

• reflexion in a plane; the body has then a plane of symmetry;

• a combination of rotations and reflexions.
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Particularly important combination: a rotation combined with a
reflexion in the plane perpendicular to the symmetry axis → ∃ axis
of alternating symmetry.

Special case: central perversion→ the angle of rotation is π; ∃
centre of symmetry
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Some basic elements about crystals

A crystal is a typical anisotropic body: the geometrical disposition
of the elementary constituents, atoms or molecules, on a lattice
induces the anisotropy of the physical phenomena that take place
in the crystal.

A lattice is an array of equally spaced and similarly situated points;
in the physical reality of the crystals, these points are occupied by
atoms or molecules. The points are said to be similarly situated
when the rest of the lattice appears the same, and in the same
orientation, when it is viewed from them.

One can consider three sets of evenly spaced parallel planes that
pass through the lattice points and divide up the crystal into
identical elementary parallelepipeds, the primitive unit cells, that
have lattice points only at the corners.
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Nevertheless, it is often better to chose a larger unit cell, having
lattice points not only in the corners, but for instance at the centre
of the faces; such celles are called multiple primitive unit cells.

In all the cases, a cell is defined by the lengths and directions of
three vectors, denoted in the following by a, b and c,
corresponding to three non parallel of its edges,

Figure: Geometrical elements of a unit cell.
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Bravais lattice: infinite lattice of points generated by a set of
discretized translations ruled by a law of the type

u = pa + qb + rc, (20)

with p, q and r integers.

The lattice is independent from the choice of the position of the
vector u, so it appears the same when viewed from any lattice
point.

It can be shown that there are only 14 possible Bravais lattices in
3D. They constitute the only possibilities for filling the space
through the repetition of an elementary motive→ the unit cell of
the Bravais lattice, called also the Bravais cell.

The 14 Bravais cells are usually grouped into seven distinct crystal
systems: Triclinic, Monoclinic, Orthorhombic, Tetragonal,
Trigonal, Hexagonal and Cubic.
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A crystal system is sometimes called a syngony

Authors do not agree completely on their number (some authors
group together the hexagonal and trigonal systems, so listing only
6 crystal syngonies, like Love who follows the classification given
by Lewis), nor on their names (e.g. Lewis names Rhombic or
Prismatic the Orthorombic syngony, and Rhombohedral the
Trigonal system, included in the Hexagonal syngony).

The physical properties of crystals depend upon the symmetry
elements of the crystals and on their combinations.
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The only possible symmetry elements for a crystal are
(combinations are possible):

• a centre of symmetry;

• a plane of symmetry;

• a 2-, 3-, 4- or 6-fold axis of symmetry;

• a 2-, 3-, 4- or 6-fold axis of alternating symmetry.

A n−fold axis of symmetry allows a covering that is a rotation
through an angle of 2π/n⇒ π, 2π/3, π/2 and π/3 are the only
rotation coverings in a crystal (the same is true also for an axis of
alternating symmetry).
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It can be shown that the number of groups of covering operations
for crystals are 32, defining the 32 classes of crystals.

Once the class of a crystal known, i.e. all its symmetries, one can
determine the form of the strain energy function, and hence the
number and type of independent elastic constants.

There are only 10 possible cases, the elastic syngonies, to
differentiate them from the crystal syngonies, whose number is
limited to 7 (or to 6 for some authors).

Though the elastic syngonies are 10, the number of independent
anisotropic elastic constants can get only 8 distinct values: 21, 13,
9, 7, 6, 5, 3 and 2; the last case is that of isotropy, impossible for
crystals.
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Classification of crystals

There are different possible classifications for crystals, depending
upon the elements of symmetry; the different classifications use
different nomenclatures and make a different use of the symmetry
elements. The most well known are :

• the Hermann-Mauguin classification with a notation based
upon the essential symmetry elements of a class, adopted as
the standard one since 1935 by the International Tables for
Crystallography

• the classification of Schoenflies, used in spectroscopy

• the Lekhnitskii classification uses a different nomenclature for
the crystal classes, based upon a complete listing of the
symmetry elements

• Voigt has given a number to each one of the 32 classes

• Lewis and Miers have named them, of course with different
names
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1.3 some basic elements about crystals 11

Table 1.1: Crystal syngonies.

Classification

Syngony Symmetry elements Examples Voigt Sch H-M N

Triclinic none
H3BO3, K2Cr2O7, 1 S2 1 21

CuSO4 · 5H2O 2 C1 1 21

Monoclinic a 2-fold a-s or a-a-s Na2SO4 · 10H2O
3 Ch

2 2/m 13

4 S m 13

5 C2 2 13

Orthorhombic
3 mutually orthogonal

KNO3, BaSO4

6 Vh mmm 9

7 V 222 9

2-fold a-s or a-a-s 8 Cv
2 mm2 9

Trigonal a 3-fold a-s or a-a-s HgS, CaCO3

9 Su
6 3m 6

10 D3 32 6

11 Cv
3 3m 6

12 S6 3 7

13 C3 3 7

Tetragonal a 4-fold a-s or a-a-s CaSO4, TiO2

14 Dh
4 4/mmm 6

15 D4 4222 6

16 Cv
4 4mm 6

17 Ch
4 4/m 7

18 C4 4 7

19 Su
4 42m 6

20 S4 4 7

Hexagonal a 6-fold a-s or a-a-s CdS, ZnO, graphite

21 Dh
6 6/mmm 5

22 Cv
6 6mm 5

23 D6 622 5

24 Ch
6 6/m 5

25 C6 6 5

26 Dh
3 6m2 5

27 Ch
3 6 5

Cubic

28 Oh m3m 3

four 3-fold a-s arranged as 29 O 432 3

NaCl, Cu, Zinc Blende 30 Td 43m 3

the cubic diagonal 31 Th m3 3

32 T 332 3

Note: Sch= Schoenflies, H-M= Hermann-Mauguin; a-s= axis of symmetry, a-a-s: axis of alternate sym-

metry. N: number of independent elastic constants.

[ September 25, 2015 at 13:56 – classicthesis Version 1.0 ]
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The Neumann’s Principle

The Neumann’s Principle is an empirical principle relating the
symmetry class of a crystal and the symmetries of its anisotropic
properties:

Any kind of symmetry, possessed by the crystallographic
form of a material, is possessed also by the material in
respect of every physical property.

This principle does not establish a one to one correspondence
between the crystal symmetries and the physical symmetries, but
merely the inclusion of all the symmetries of the crystal in the set
of physical symmetries ⇒ some physical properties can have
symmetries not possessed by the crystal (e.g. cubic crystals are
optically isotropic; isotropy includes all the cubic symmetries)
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Some known ingredients of elasticity

We recall here some fundamental equations, that will be
occasionally used in the following of this text.

• Infinitesimal strain tensor: for a displacement vector field
u(x1, x2, x3) such that |ui ,j | � 1 ∀i , j = 1, 2, 3, ui ,j = ∂ui

∂xj

ε =
1

2
(∇u +∇u>) = εijei ⊗ ej , i , j = 1, 2, 3, (21)

already introduced, is the measure of strain;

εij =
ui ,j + uj ,i

2
i , j = 1, 2, 3. (22)

∇u is the displacement gradient:

∇u = ui ,jei ⊗ ej , i , j = 1, 2, 3, (23)
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• Equation of motion:

divσ = b → σij ,j = bi ∀i , j = 1, 2, 3,→ (24)

σ11,1 + σ12,2 + σ13,3 = b1,

σ21,1 + σ22,2 + σ23,3 = b2,

σ31,1 + σ32,2 + σ33,3 = b3,

(25)

where b is the body vector, that includes the mass
acceleration and the reversed body force f:

b = ρ
∂2u

∂t2
− f. (26)

If ∂2u
∂t2 = o everywhere → equilibrium equation.
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• The Saint Venant-Beltrami compatibility equations give the
integrability necessary conditions for the components of ε; in
compact form they are:

εij ,kl + εkl ,ij − εik,jl − εjl ,ik = 0; (27)

these are 81 equations, but only 6 are not identities, as it can
be checked with some work but without difficulty:

2ε12,12 = ε11,22 + ε22,11,

2ε23,23 = ε22,33 + ε33,22,

2ε31,31 = ε11,33 + ε33,11,

ε11,23 + ε23,11 = ε13,12 + ε12,13,

ε22,13 + ε13,22 = ε12,23 + ε23,12,

ε33,12 + ε12,33 = ε23,13 + ε13,23.

(28)
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Anisotropic elasticity

Part 1
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The Hooke’s law for anisotropic bodies

Ω
∂Ωt

n

tf

∂Ωu

Be Ω a body acted upon by body
forces f and by surface tractions t on
its frontier ∂Ω whose outward unit
normal is n.

We consider a small arbitrary
variation δu of the displacement field
on Ω, compatible with the given
boundary conditions and satisfying
the kinematical conditions

ε =
1

2
(∇u +∇u>), (29)
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The total mechanical work dW done by the applied forces can be
transformed as follows

dW =

∫
Ω
f · δu dω +

∫
∂Ω

t · δu ds =

∫
Ω
f · δu dω +

∫
∂Ω
σn · δu ds =∫

Ω
f · δu dω +

∫
∂Ω
σδu · n ds =

∫
Ω

[f · δu + div(σδu)] dω =∫
Ω

[(f + divσ) · δu + σ · ∇δu] dω =

∫
Ω
σ · δε dω

(30)

In establishing eq. (30) we have used successively the Cauchy’s
stress theorem, the symmetry of σ, the Gauss theorem, two
standard results for tensor and vector fields2 and the motion
equation.

2Namely, we have used the identity div(L>v) = divL · v + L · ∇v, and the

fact that L · ∇v+∇v>

2
= L · ∇v ∀L = L>
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The quantity
δV = σ · δε = σijδεij , (31)

represents the variation of the internal energy of the body per unit
of volume produced by a small variation of the strain state.

Following the energetic approach of Green, we define as elastic a
body for which the total variation ∆V of the internal energy due
to a finite transformation from a state A to a state B is
independent from the integration path.

In particular

∆V =

∫ B

A
δV = VB − VA (32)

must then be null for any transformation where A=B.
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The strain energy density
Hence, for an elastic body δV must be the exact differential of a
scalar function V (ε), the strain energy density or elastic potential
such that

dV = σ · dε = σijdεij , (33)

which gives the Green’s formula

σij =
∂V

∂εij
. (34)

We now postulate that in the initial state, i.e. when the body is
not acted upon by forces, ε = o and σ = o, i.e. the body is
unstrained and unstressed in its natural state. Then, developing
V (ε) in a Taylor series about ε = o we get

V (ε) = V (ε = o) +
∂V

∂εij

∣∣∣∣
ε=o

εij +
1

2

∂2V

∂εij∂εkl

∣∣∣∣
ε=o

εijεkl + ... (35)
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The elastic tensor

After putting V (ε = o) = 0 and limiting the development to the
first non null term, which is correct for small strains, gives

V =
1

2

∂2V

∂εij∂εkl

∣∣∣∣
ε=o

εijεkl ; (36)

the second derivatives in the above equation are linear operators
depending upon four indexes; they are the components of a
fourth-rank tensor E,

Eijkl :=
∂2V

∂εij∂εkl

∣∣∣∣
ε=o

, (37)

the (stiffness) elasticity tensor, so that

V =
1

2
Eijklεijεkl =

1

2
ε · Eε. (38)
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Major symmetries

E describes the elastic response of the continuum; its 81 Cartesian
components are the elastic moduli Eijkl

The independent elastic moduli are far less than 81: by the
Schwarz theorem we get

Eijkl =
∂2V

∂εkl∂εij
=

∂2V

∂εij∂εkl
= Eklij ; (39)

the above 15 relations are known as major symmetries and reduce
the number of independent moduli of E from 81 to 66.
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The Hooke’s law

Applying the Green’s formula (34) we get

σij = Eijklεkl → σ = Eε. (40)

This is the Hooke’s law (1660), establishing a linear relation
between stress and strain.

This linearity is a direct consequence of the quadratic structure of
V and of the Green’s formula.

Though initially formulated for isotropic bodies, it is the basic law
of elasticity also for the more general case of anisotropic continua.
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Minor symmetries

Through the Hooke’s law, because of the symmetry of σ and ε,

σij = σji and εij = εji ⇒
Eijkl = Ejikl = Eijlk = Ejilk ∀i , j , k , l ∈ {1, 2, 3}.

(41)

The above 45 relations are the minor symmetries and reduce the
independent moduli to only 21.

This is the highest number of independent moduli that an elastic
material can have. In such a case, the material is completely
anisotropic or triclinic.

44 / 77



Another approach

An alternative, classical, approach to elasticity is to postulate the
Hooke’s law and the existence of V ; once obtained the Green’s
formula, using the Schwarz theorem gives again the major
symmetries, while the minor ones are still given by the symmetry of
ε and σ.

Then, the expression of V is obtained integrating dV :

dV = σ · dε = Eε · dε = Eijklεkldεij →

V =
1

2
Eijklεijεkl =

1

2
ε · Eε.

(42)
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Material dependent reductions

The above two reductions of the number of independent
components of E are the only universal ones, i.e. valid for any
elastic classical material (the so-called Green’s materials).

Further reductions of the number of independent moduli can be
obtained only if special conditions, not universal but depending
upon the material type, are introduced.

Such conditions are called elastic or material symmetries, and
indicate the invariance of some elastic moduli under some
geometric transformations.

We examine hence the effects on E of elastic symmetries in the
following.

46 / 77



The stress energy

Injecting the Hooke’s law into the expression (38) of V we get also

V =
1

2
σ · ε. (43)

Let us now consider the inverse of the Hooke’s law:

ε = Zσ, Z = E−1, (44)

with Z the compliance elasticity tensor; introducing this last
equation for ε into (38) gives

V =
1

2
σ · Zσ, (45)

an expression called stress energy density in the literature.
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A warning!

A remark: in this section, the word symmetry has been used for
denoting the equivalence of the positions of an index for two or
more components of the elasticity tensor.

To make the distinction with the concept of elastic symmetry, the
expression tensor or index symmetry could be used.

Anyway, the reader should be aware of the fact that the same word,
symmetry, can have two rather different meanings in our context.

Before examining the elastic symmetries, we need to recall some
ingredients and introduce two notations.
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The Voigt’s notation

The general, tensorial, expression of the Hooke’s law needs the use
of quantities with four indexes,

σij = Eijklεkl , (46)

which can be somewhat cumbersome and heavy.

That is why some simplified notations have been proposed. In
particular, they allow for a matrix representation of (46); these
formalisms switch the algebra from that of a 4th-rank tensor to
that of a 6x6 square symmetric matrix.
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In the formalism of Voigt (1910), the stress and strain tensors are
written as :

{σ} =



σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = σ23

σ5 = σ31

σ6 = σ12


, {ε} =



ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 = 2ε23

ε5 = 2ε31

ε6 = 2ε12


. (47)

Eq. (47) shows the relations and order established for the indexes
by the Voigt’s notation:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 31→ 5, 12→ 6. (48)
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The introduction of the coefficient 2 for the terms ε4, ε5 and ε6 is
needed for taking into account for the symmetry of σ and ε in the
Hooke’s law.

This fact imposes some accuracy in the use of the Voigt’s
notation, because the algebras for tensors σ and ε are not
completely the same, namely for their transformation upon axes
rotation and tensor inversion.

The Voigt’s notation transforms hence second rank symmetric
tensors into column vectors; correspondingly, the fourth-rank
elasticity tensor is transformed into a 6x6 symmetric square matrix,
the symmetry of such a matrix corresponding to the major
symmetries of E.
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According to the index transformation rule (48), the matrix form of
the Hooke’s law with the Voigt’s notation is

{σ} = [C ] {ε} → (49)

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

ε4

ε5

ε6


. (50)

The name [C ] is usually preferred to E to make a clear distinction
between the tensor and matrix representation.

There is a perfect coincidence between the Eijkl and the Cpq,
thanks to rule (48), e.g. E2312 = C46,E1322 = C52 etc.
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Let us now consider the inverse of the Hooke’s law:

ε = Zσ, Z = E−1, (51)

that in the Voigt’s notation is

{ε} = [S ] {σ} → (52)

ε1

ε2

ε3

ε4

ε5

ε6


=



S11 S12 S13 S14 S15 S16

S12 S22 S23 S24 S25 S26

S13 S23 S33 S34 S35 S36

S14 S24 S34 S44 S45 S46

S15 S25 S35 S45 S55 S56

S16 S26 S36 S46 S56 S66





σ1

σ2

σ3

σ4

σ5

σ6


. (53)
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A consequence of the introduction of the 2s in (47)2 is that, unlike
the case of [C ], not all the components of [S ] are equal to the
corresponding ones of Z:

[Sij ] =

[
Zppqq 2Zpprs

2Zpprs 4Zpqrs

]
→


S11 = Z1111 S12 = Z1122 S13 = Z1133 S14 = 2Z1123 S15 = 2Z1131 S16 = 2Z1112

S22 = Z2222 S23 = Z2233 S24 = 2Z2223 S25 = 2Z2231 S26 = 2Z2212

S33 = Z3333 S34 = 2Z3323 S35 = 2Z3331 S36 = 2Z3312

S44 = 4Z2323 S45 = 4Z2331 S46 = 4Z2312

sym S55 = 4Z3131 S56 = 4Z3112

S66 = 4Z1212

 .
(54)

The Voigt’s notation implies a different algebra for E and S: [C ]
and [S ] do not represent some 2nd -rank tensors in R6.

Practically, the Voigt’s notation needs some carefulness, not only
in the differences between [C ] and [S ], but also in the
transformations produced by axes rotation.

54 / 77



The Kelvin’s notation

The Kelvin’s notation (by somebody named Mandel’s notation)
was proposed by Lord Kelvin as early as 1856, but, probably
because making use of irrational quantities, it has not known an as
large success as the Voigt’s notation.

Nevertheless, rather recently a new attention has been brought by
scientists on it, mainly for its algebraic properties: the Kelvin’s
notation has not the drawbacks of the Voigt’s one, as it will be
seen below.

The Kelvin’s notation is different from the Voigt’s one in that the
coefficients 2 affecting ε, eq. (47), are equally distributed over σ
and ε, in such a way their product still amounts to 2:
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{σ} =



σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 =
√

2σ23

σ5 =
√

2σ31

σ6 =
√

2σ12


, {ε} =



ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 =
√

2ε23

ε5 =
√

2ε31

ε6 =
√

2ε12


. (55)

In this way, eqs. (50) and (53) still hold but there is no difference
between σ and ε in the transition from the tensor to the matrix
representation.

In particular, the way the components of [C ] and [S ] are deduced
from the corresponding ones of E and Z, are exactly the same (no
summation over dummy indexes):
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[Cij ] =

[
Eppqq

√
2Epprs√

2Epprs 2Epqrs

]
, [Sij ] =

[
Zppqq

√
2Zpprs√

2Zpprs 2Zpqrs

]
.

(56)
The above symbolic relations can be easily translated in the
detailed expressions of Cij and Sij , applying a scheme quite similar
to that detailed in eq. (54).

Merhabadi and Cowin (1990), have shown that the Kelvin’s
notation gives a representation of elasticity by matrices, [C ] and
[S ], representing 2nd -rank symmetric tensors in R6, which is not
the case with the Voigt’s notation.

Hence, the Kelvin’s notation transfers the algebra of elasticity from
4th-rank tensors in R3, to 2nd -rank tensors in R6.

This fact has some advantages, for instance the rotation of
matrices [C ] and [S ] is made in the same way, unlike with the
Voigt’s notation.
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Mechanical meaning of the anisotropic elastic components

In the most general case of a triclinic material, the number of
independent elastic moduli is as great as 21.

It is important to understand the mechanical meaning of these
parameters, because, unlike in the case of an isotropic material,
some unusual, strange mechanical effects can arise in anisotropy.

To discover these effects and connect them to particular elastic
parameters, it is worth to use the compliances, i.e. the components
of [S ] or Z.
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Let us consider a cube of a triclinic material, subjected to the only
traction σ1. In such a case, eq. (53) gives

εk = Sk1σ1 ∀k = 1, ..., 6, →
εij = Zij11σ11 ∀i , j = 1, 2, 3.

(57)

Figure: Anisotropic stretched cube.

59 / 77



→ In a completely anisotropic body all the components of ε are
not null: a normal stress produces also shearing strains → The
coupling effects are not restricted to the only Poisson’s effect, due
to the terms Sij , i , j = 1, 2, 3, i 6= j : in the anisotropic case, there
is also a coupling between normal stress and shear strain, due to
terms Skl , k = 4, 5, 6, l = 1, 2, 3.

In addition, generally speaking S12 6= S23 6= S31 → the Poisson’s
effect is different in the orthogonal directions, i.e. ε2 6= ε3.

In the same way, usually S4k 6= S5k 6= S6k , k = 1, 2, 3, so that also
for the shearing strains it is ε4 6= ε5 6= ε6.

Finally, the anisotropic cube does not only change its volume under
the unique action of a traction, like in isotropic bodies, but it
changes also its form: it becomes a prism with no orthogonal faces.
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Let us now consider the same cube submitted to a unique shear
stress, say σ5; eq. (53) gives then

εk = Sk5σ5 ∀k = 1, ..., 6, →
εij = Zij31σ31 ∀i , j = 1, 2, 3.

(58)

This shows the existence of a coupling between shear stresses and
extension strains, due to the terms Slk , k = 4, 5, 6, l = 1, 2, 3 and
also a coupling between a shear stress and the shearing strains in
orthogonal planes, due to the terms Sij , i , j = 4, 5, 6, i 6= j .

This last effect is called the Chentsov’s effect: it is analogous to
the Poisson’s effect, but it concerns shear stresses and strains.

Also in this case, these couplings are not necessarily the same in all
the planes, because generally speaking Sl4 6= Sl5 6= Sl6, l = 1, 2, 3
and S45 6= S56 6= S64.

Submitted to simple shear stress, the cube changes not only its
shape, but also its volume, unlike in the case of isotropic bodies.
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Finally, [S ], and also [C ], can be subdivided into parts in charge of
a particular effect:
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Signification physique des composantes élastiques
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Figure: Partition of the compliance matrix by mechanical effects.
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Taking into account for the elastic symmetries

We now go back to the third reduction of the Eijkl ; as said, this
can be done upon introduction of the elastic symmetries.

When some kind of symmetry in the behavior is present, then some
equivalent directions exist, whereon the behavior is the same.

Just because the behavior is the same along equivalent directions,
the forms of the elasticity matrix [C ] and of the strain energy are
the same in two frames related by a covering operation.

This gives some relations among the components of [C ], e.g. some
of them are null.

Let us sketch the procedure for obtaining such relations:
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• the expressions of the strain energy in two frames R and R′
related by a covering operation are

V =
1

2
{ε}>[C ]{ε}, V ′ =

1

2
{ε′}>[C ]{ε′}; (59)

• the strain tensor {ε′} can be written in the frame R:

{ε′} = [R]{ε}, (60)

with [R] the orthogonal matrix corresponding to the covering
operation, i.e. to the symmetry of the material;

• injecting eq. (60) into V ′, eq. (59), and putting V = V ′,
gives the equation

{ε}>[C ]{ε} = ([R]{ε})> [C ][R]{ε} ∀{ε}; (61)

• this unique scalar equation gives all the relations that must be
true for the components of [C ] because it is true ∀{ε}.
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This procedure is not the only one; in fact, in place of working
with the strain energy, one could directly state that [C ], or [S ],
does not change when passing from R to R′.
This approach is practically equivalent to the previous one, but it
gives a matrix equation. For instance, for [C ] we have:

{σ} = [C ]{ε}, and {σ′} = [C ]{ε′} →
[R]>{σ′} = [C ][R]>{ε′} →
{σ′} = [R][C ][R]>{ε′} ⇒ [C ] = [R][C ][R]>.

(62)

Now, the question is:

which orthogonal matrix [R] represents a given covering operation?

Before, we need introduce the algebra of rotations for 4th-rank
tensors.
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Algebra of tensor rotations

Let us consider two orthonormal bases B = {e1, e2, e3} and
B′ = {e′1, e′2, e′3} and let us suppose that these two bases are
related by the orthogonal tensor U.

This last is not necessarily a proper rotation, because reflections in
a plane are possible too.

We define U as the tensor such that (since now, we will indicate by
a prime ’ a component in B′ or a vector or tensor whose
components are given in B′)

ei = Ue′i ⇒ e′i = U>ei ; (63)

with this definition, it is easy to show that
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U =


e′1

e′2

e′3

 , U> =
[
e′1 e′2 e′3

]
, (64)

i.e. the matrix [U] representing U in the basis B′ has for rows the
components of the vectors of B′ expressed in the basis B.

Algebraically, the components of U are the director cosines of the
angles between two corresponding axes in B and B′.

Using the above equations, the components in B′ of a tensor of
any rank r can be expressed as a linear combination of its
components in B, the coefficients of the combination being
products of r components of U:
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considering that

ei = Ue′i = Upq(e′p ⊗ e′q)e′i = Upqδqie
′
p = Upie

′
p, (65)

then:

• for a vector (r = 1) it is

w = wiei = wiUkie
′
k ⇒ w ′k = Ukiwi ; (66)

• for a second-rank tensor (r = 2) it is

L = Lijei ⊗ ej = LijUmie
′
m ⊗ Unje

′
n =

UmiUnjLije
′
m ⊗ e′n ⇒ L′mn = UmiUnjLij ;

(67)
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• for a 4th-rank tensor (r = 4) it is3

E =Eijklei ⊗ ej ⊗ ek ⊗ el =

EijklUmie
′
m ⊗ Unje

′
n ⊗ Upke

′
p ⊗ Uqle

′
q =

UmiUnjUpkUqlEijkle
′
m ⊗ e′n ⊗ e′p ⊗ e′q ⇒

E ′mnpq = UmiUnjUpkUqlEijkl .

(68)

3∀ A, B and L ∈Lin, A⊗ B is the 4th-rank tensor defined by
(A⊗ B)L := (B · L)A. Applying this rule to the dyads of a basis, we get :
(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq) = (ek ⊗ el) · (ep ⊗ eq)(ei ⊗ ej) = δkpδlq(ei ⊗ ej).
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An advanced tensor representation for rotations

Introducing new operators it is possible to give a more concise,
advanced representation for tensor rotations.

Given A, B ∈ Lin4, the conjugation product A� B is the
fourth-rank tensor defined by the operation

(A� B)C := ACB> ∀C ∈ Lin. (69)

It is worth to remark that eq. (69) implies that for the vectors of a
basis it is

(ei ⊗ ej) � (ek ⊗ el) = ei ⊗ ek ⊗ ej ⊗ el , (70)

which implies that
(A� B)ijkl = AikBjl . (71)

4We will indicate by V the translations vector space, associated with the
ordinary Euclidean space E , by Lin the manifold of second-order tensors on V
and by Lin that of fourth-rank tensors on Lin.
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Once defined the transpose A> of a fourth-rank tensor A as the
unique tensor such that

L · (AM) = M · (A>L) ∀L,M ∈ Lin, (72)

it is immediate to show that

(A⊗ B)> = B⊗ A,

(A� B)> = A> � B>.
(73)

Like for tensors in Lin, also a tensor A ∈ Lin is said to be
symmetric ⇐⇒ A = A>. It is simple to check that

A = A> ⇒ A>ijkl = Aklij , (74)

i.e., the major symmetries of the elastic tensors E and Z actually
coincide with the definition of symmetric tensor in Lin.
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For an orthogonal second-rank tensor U, we define its orthogonal
conjugator U as

U := U�U; (75)

it is not difficult to show that just as U preserves scalar products
of elements in V, its associated orthogonal conjugator U preserves
scalar products in Lin:

UA · UB = A · B ∀A,B ∈ Lin. (76)

In other words, U is an orthogonal tensor in Lin. Introducing the
identity of Lin,

I := I� I ⇒ I = Iijkl(ei ⊗ej ⊗ek ⊗el) = δikδjl(ei ⊗ej ⊗ek ⊗el),
(77)

it is easy to recognize that also for rotations in Lin

UU> = U>U = I. (78)
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Be n ∈ V a unit vector and let us suppose that n is orthogonal to a
symmetry plane. Then

U := I− 2n⊗ n, U = U>, U = U�U = U>, (79)

is the orthogonal tensor describing the symmetry in the plane
whose normal is n. In fact,

Un = −n
Um = m ∀m ∈ V : m · n = 0, |m| = 1.

(80)

It is now possible to give a compact form to results (66), (67) and
(68):

w′ = Uw,

L′ = ULU> = (U�U)L = UL,
E′ = (U�U)E(U�U)> = UEU>.

(81)
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The Kelvin representation of a rotation tensor

Using eq. (55) and the result of eq. (71), we obtain the matrix [R]
that corresponds, in the Kelvin’s notation, to tensor U:

[R] =


U2

11 U2
12 U2

13

√
2U12U13

√
2U13U11

√
2U11U12

U2
21 U2

22 U2
23

√
2U22U23

√
2U23U21

√
2U21U22

U2
31 U2

32 U2
33

√
2U32U33

√
2U33U31

√
2U31U32√

2U21U31
√

2U22U32
√

2U23U33 U23U32 + U22U33 U33U21 + U31U23 U31U22 + U32U21√
2U31U11

√
2U32U12

√
2U33U13 U32U13 + U33U12 U31U13 + U33U11 U31U12 + U32U11√

2U11U21
√

2U12U22
√

2U13U23 U12U23 + U13U22 U11U23 + U13U21 U11U22 + U12U21


(82)

The above matrix [R] allows for the change of basis of any
second-rank tensor in the Kelvin’s notation.

In particular for σ and ε:

{σ}′ = [R]{σ}, {ε}′ = [R]{ε}. (83)
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It can be checked that, when U is an orthogonal tensor, then

[R][R]> = [R]>[R] = [I ], (84)

i.e., [R] is an orthogonal matrix in R6; this is not the case with the
Voigt’s notation.

Hence, [R] represents, in the given basis, an orthogonal tensor of
Lin over a manifold of R6.

It is impossible to put the result of eq. (68) in matrix form,
because also in the Kelvin’s notation it depends upon four suffixes.

Nevertheless, it is of course possible to express all the components
of such an operator; unfortunately, in the most general case these
components have a so complicate and long expression that it is
practically impossible to write down all of them, so they are
omitted here.

75 / 77



A tensorial characterization of elastic symmetries

The previous results let characterize in an elegant tensorial form
the existence of elastic symmetries in a solid.

Let us suppose that a material has a given elastic symmetry and
that the two bases B and B′ correspond to equivalent directions
with respect to the symmetry of concern.

Physically, this means that it is not possible to detect the change
from B to B′ by experiments measuring stresses, because the
behavior is exactly the same in the two cases: E = E′. Then,
applying eq. (81)2 to σ and ε,

σ′ = Uσ, ε′ = Uε, (85)

and the Hooke’s law, eq. (40), we get, because E = E′,
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σ′ = Eε′ → Uσ = EUε → UEε = EUε ⇒ UE = EU. (86)

Hence, an orthogonal transformation U is in the elastic symmetry
group of the material if and only if E and U commute, U being the
orthogonal conjugator of U.

The result of eq. (86) constitutes also a way for determining the
number and type of independent elastic moduli, i.e. the distinct
components of E.

This is the way sketched, with reference to matrix [C ], in eq. (62);
however, the energetic approach is preferred here.
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