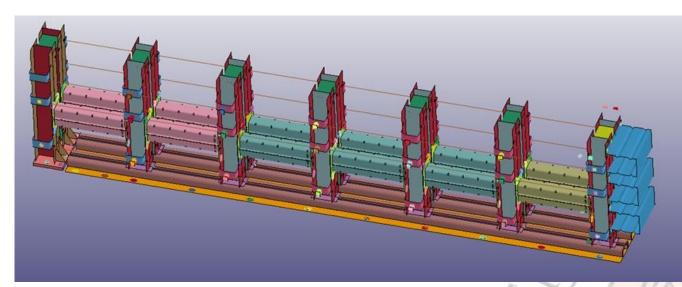


PIC

Road safety through FEM simulations: concepts and criteria towards a 0-deaths strategy

Topic Introduction

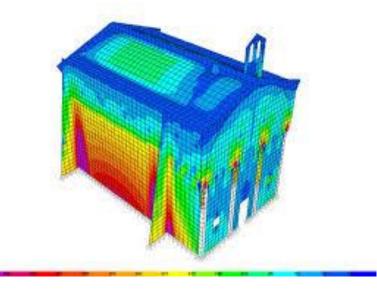

Phd. Eng. Monica Meocci

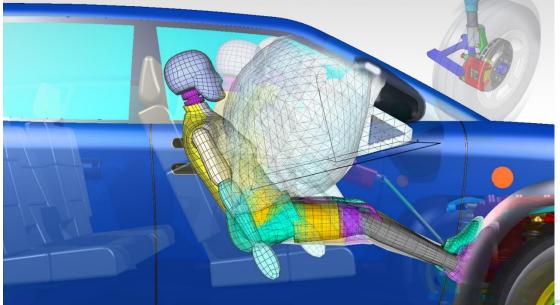
September, 09 - 2019

The FEM Methods

The **finite element method** (**FEM**) is a numerical method for solving problems of engineering and mathematical physics.

To solve the problem, it subdivides a large system into smaller, simpler parts that are called finite elements. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem.


09/09/2019

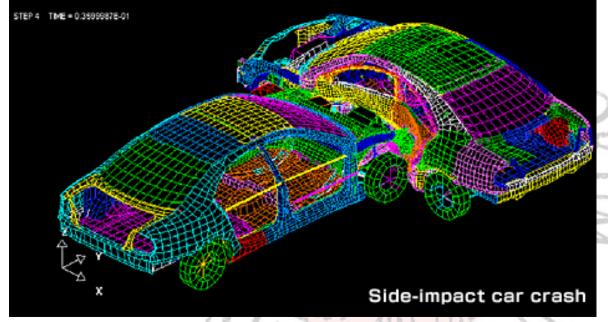

Topic Introduction

The FEM Methods

The **finite element method** (**FEM**) is a numerical method for solving problems of engineering and mathematical physics.

To solve the problem, it subdivides a large system into smaller, simpler parts that are called finite elements. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem.

09/09/2019


Topic Introduction

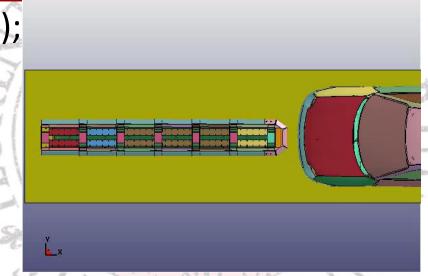
LS-DYNA is a general-purpose finite element program capable of simulating complex real world problems.

It is used by the automobile, aerospace, construction, military, manufacturing, and bioengineering industries. LS-DYNA is optimized for shared and distributed memory Unix, Linux, and Windows based, platforms, and it is fully QA'd by LSTC. The code's origins lie in highly nonlinear, transient dynamic finite element

analysis using explicit time integration.

Nonlinear

- Changing boundary conditions (such as contact between parts that changes over time);
- Large deformations (for example the crumpling of sheet metal parts);
- Nonlinear materials that do not exhibit ideally elastic behavior (for example thermoplastic polymers).



Transient dynamic

...means analyzing <u>high speed, short duration</u> events where inertial forces are important.

Typical uses include:

- Automotive crash (deformation of chassis, airbag inflation, seatbelt tensioning);
- Explosions (underwater Naval mine, shaped charges);
- Manufacturing (sheet metal stamping).

Need and characteristics:

It is appropriate to investigate and solve problems characterized by:

- large deformations;
- sophisticated material models;
- complex contact conditions (with the possibility of automatically managing the contact areas); and
- working in time domain;
- modelling a wide range of material and their behaviour;
- models different types of elements.

Main issues to be consider:

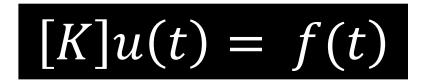
- Complexity of the physical phenomenon;
- Interaction between multiple objects \rightarrow contacts, connections and penetration;
- Material behaviour according to the speed of the system;
- Secondary effects due to the application of "loads" (speed, forces, forcing, etc.).

Main issues to be consider:

These conditions imply a high complexity in the evolution of the phenomenon and a very variable response of the studied system.

Added to this ...the complexity of the modelling <u>of the boundary conditions</u> <u>variable</u> during the evolution of the phenomenon over time.

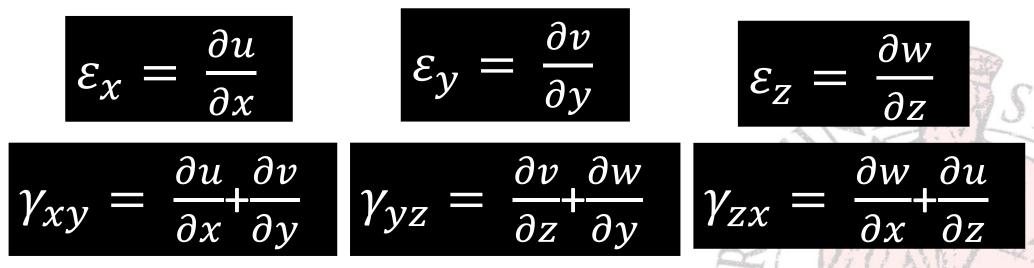
The system is therefore based on the resolution of a system composed of the following three classes of equations:


- Equilibrium equations;
- Compatibility equations;
- Bonding equations.

Equilibrium equations:

Equilibrium equations relate stresses to applied forces. Hp: linear equations for small displacements

$$[M]\ddot{u}(t) + [C]\dot{u}(t) + [K]u(t) = f(t)$$


Static analysis

Where [M], [C] and [K] are the matrix of masses, damping and elasticity respectively. The three vectors represent velocity and acceleration displacements respectively.

Compatibility equations:

Compatibility equations relate deformations to displacements. Small deformations \rightarrow linear equations

→ from which the internal congruence equations are derived

If the deformation components respect the internal congruence equations, the congruence of the deformation is guaranteed

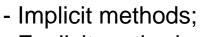
No penetration!

Bonding equations:

The binding equations describe a constitutive empirical relationship that can be of various types...(elastic, elastic-plastic, thermal...)

$$\sigma = f(\varepsilon, \varepsilon)$$

Where ε , $\dot{\varepsilon}$ represent the deformation of the material and its velocity deformation.


$$[M]\ddot{u}(t) + [C]\dot{u}(t) + [K]u(t) = f(t)$$

 $[M]\ddot{u}(t) + [C]\dot{u}(t) + [K(u)]u(t) = f(t)$

The analytical solution of the "linear" case is available in a closed form

Of more interest is the resolution of the "non-linear" case, that is when, at each integration step, the matrices can change (being a function of time)

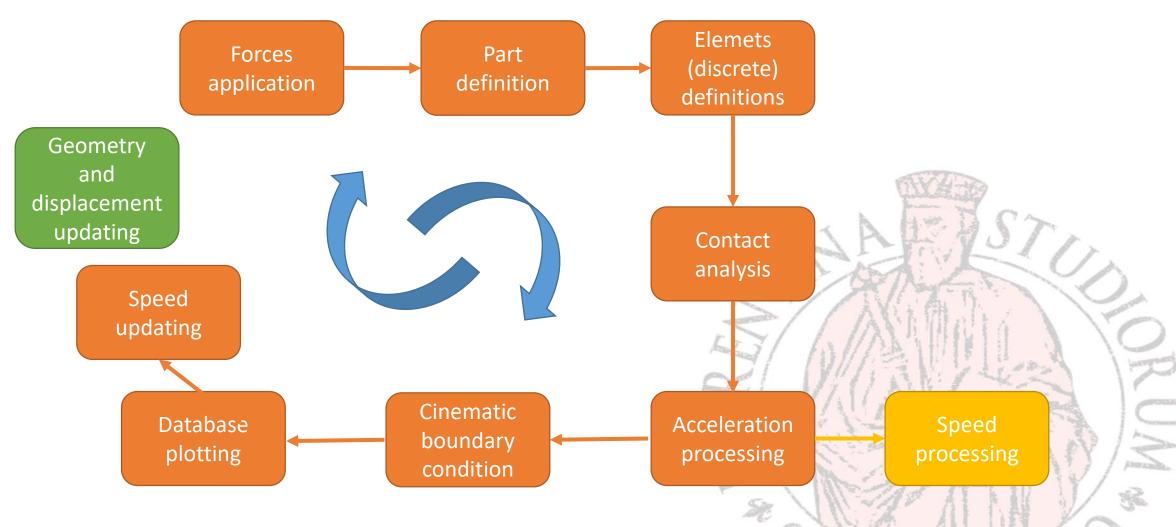
iterative numerical integration methods

- Explicit methods.

2017.00

explicit codes \rightarrow generally based on the central differences methods.

The equations of equilibrium at the nodes are written in the configuration for which <u>both the displacement and the speed are already known</u>, so that once the <u>acceleration has been calculated</u>, it is possible to proceed with integration over time.

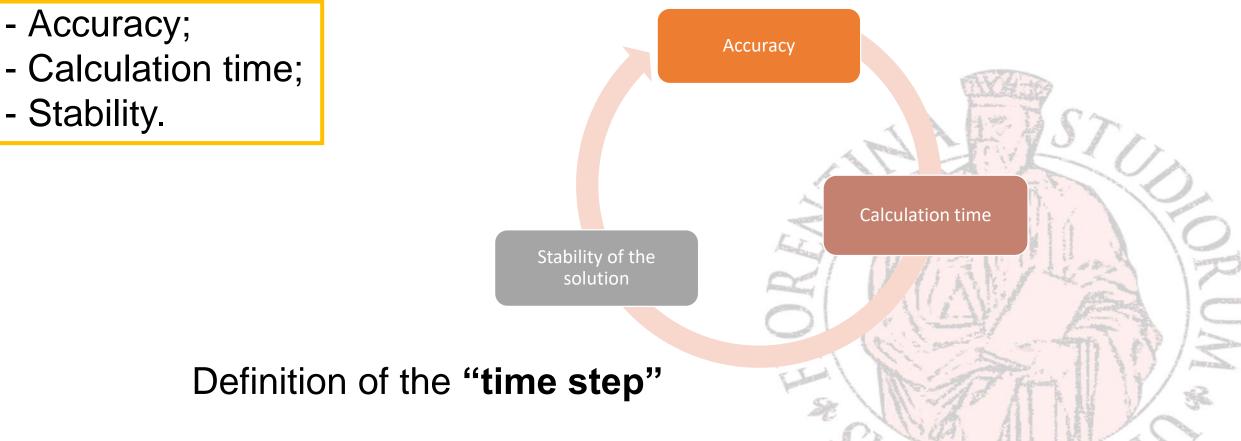

$$u_{n+1} = u_n + \Delta t \times f(u_n, t_n)$$

The solution to a generic time does not depend on itself, but only on the solution at the previous instant.

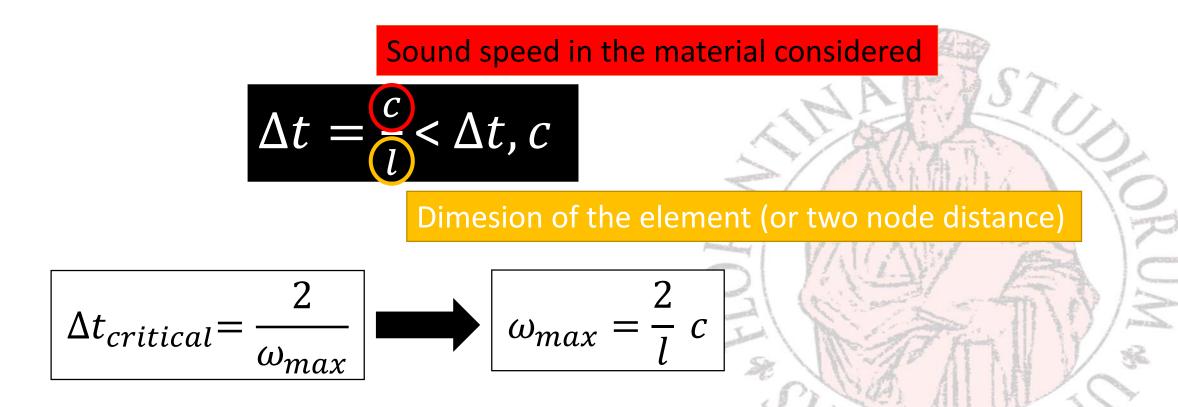
The most used method of this type is the integration of finite differences.

 $\mathsf{START} \rightarrow$

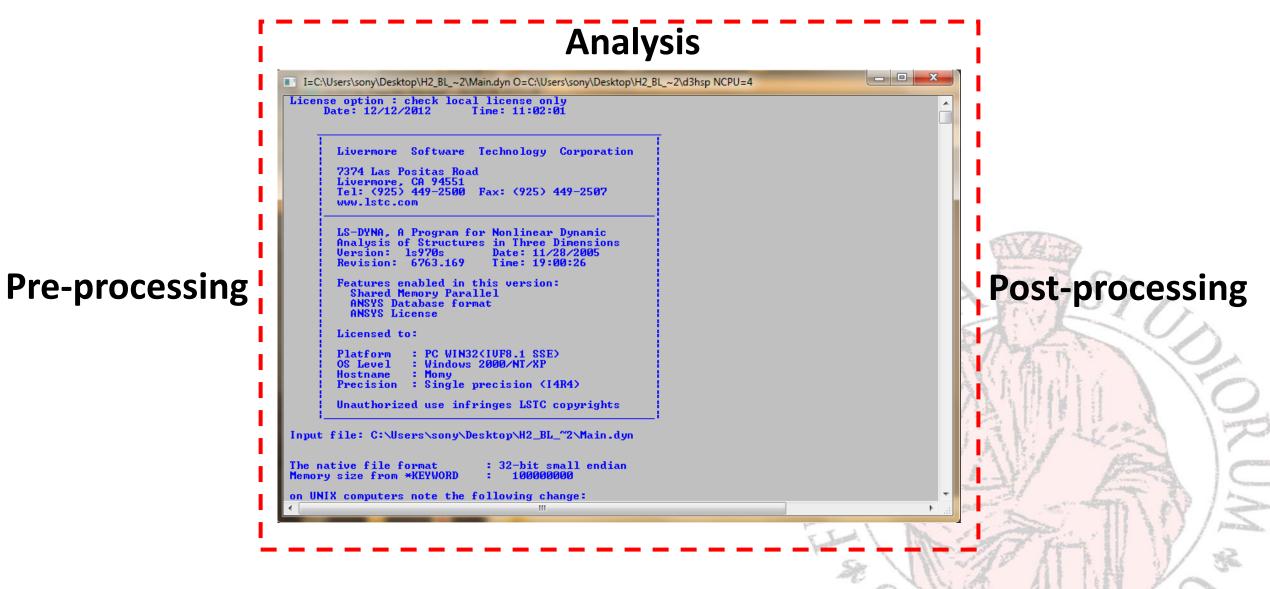
advantages


Eliminating the problem of having to invert stiffness matrix at each step; in addition the equations are decoupled and can therefore be solved directly without recourse to convergence checks.

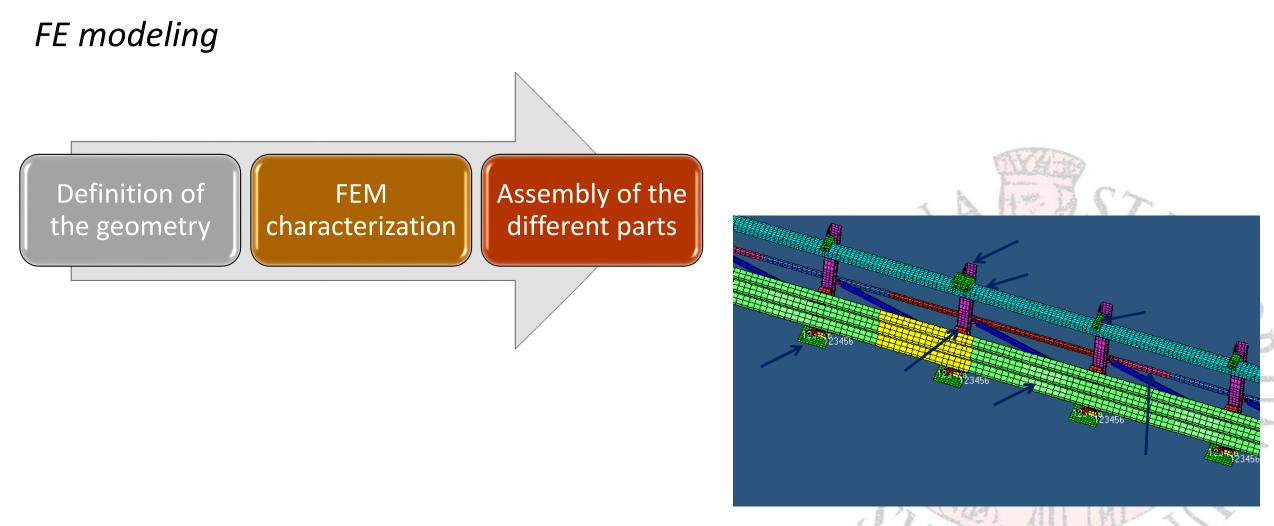
The method work with very small integration intervals, which therefore quickly increase the computational cost in determining the solution, obviously seeking to achieve a sufficient accuracy.



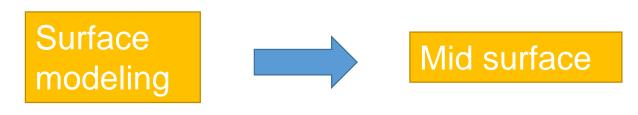
The main problem, in using an explicit solver like LS-DYNA in the analysis of crash phenomena, is the optimization of the three following factors:

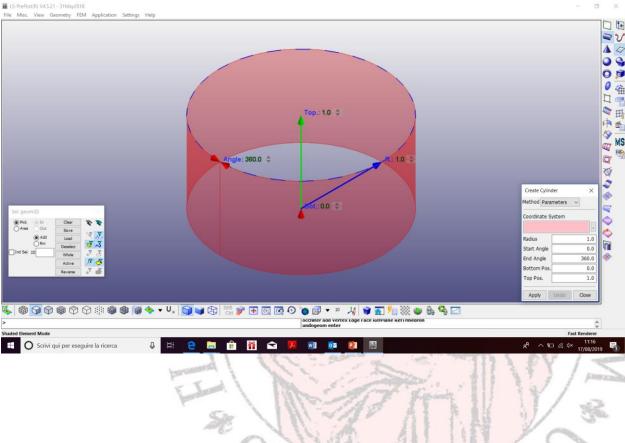


The **time step** is the integration time interval represented by the term Δt . It depends on the <u>size of the element</u> involved in the calculation.



Pre-processing

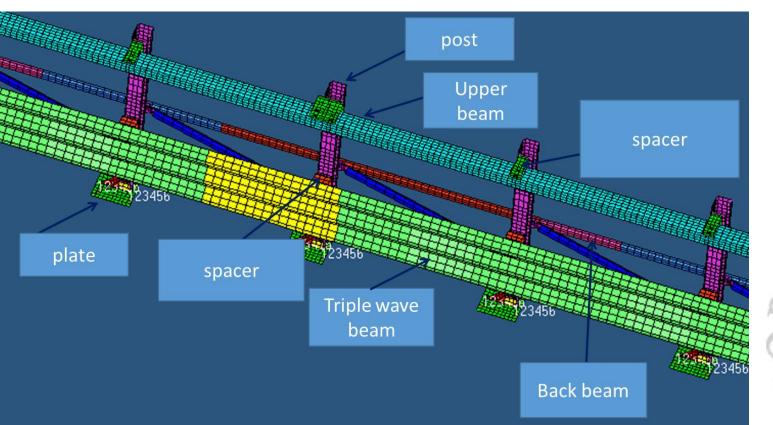


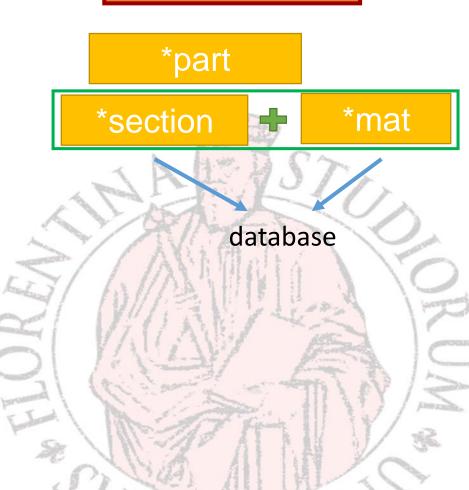


Pre-processing

Definition of the geometry

Construction of the 3D model/models





Pre-processing

Hierarchical approach

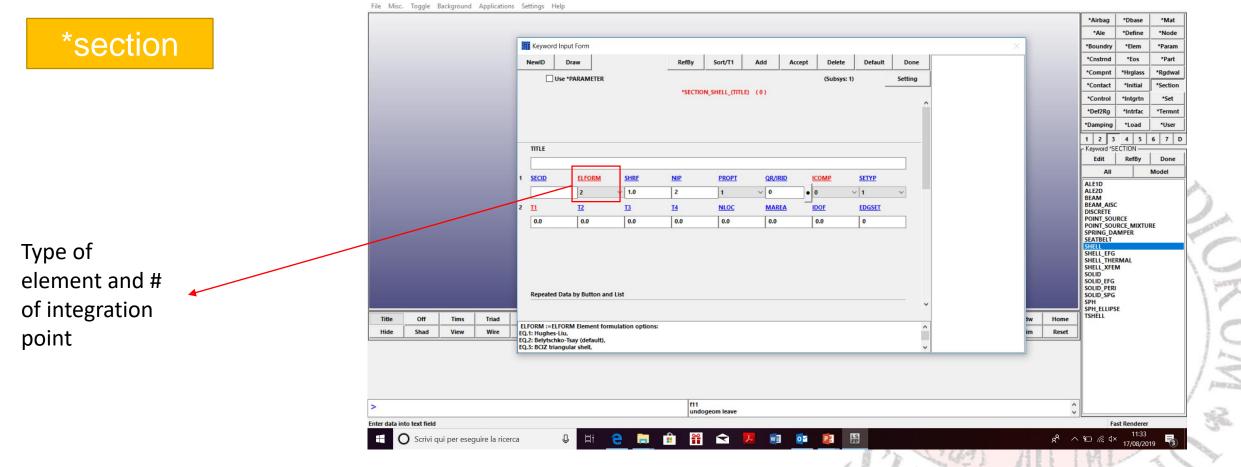
FEM characterization

Pre-processing

FEM characterization

*MAT_24 (MAT_PIECEWEISE_LINEAR_PLASTICITY)

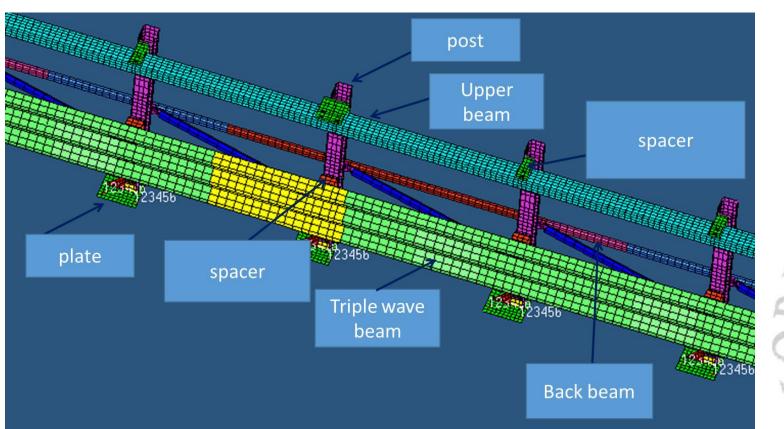
*mat	File Misc. Toggle Background Applications Settings Help				
IIIal		*Airba	*Dbase	*Mat	
		*Ale	*Define	*Node	1
001 elastic	Sin Keyword Input Form	*Bound	y *Elem	*Param	1
001 Alastic	NewID RefBy Add Accept Delete Default Done	*Cnstrn		*Part	1
	Use *PARAMETER (Subsys: 1) Setting	*Compo *Conta		*Rgdwal *Section	1
	*MAT_ELASTIC_(TITLE) (001) (0)	*Contra		*Set	1
		*Def2R		*Termnt	
		*Dampi	g *Load	*User	m
	πιε	1 2		6 7 D	1 7
			ansfer From Ma	atDB	
	1 <u>MID RO E PR DA DB NOT USED</u>	Edit	RefBy	Done	
	0.0 0.0	GroupBy	Shell	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	COMMENT:	Sort Na	me v A	.u. ~	
		219-COI 022-COI	POSITE_DAMA	GE ^	
		059 SHE	IPOSITE_DIRECT	FAILURE	
		116-CO 117-CO 104-DA	POSITE_MATRI	ix	1
		105-DA 153-DA	IAGE_2		Pa
		001-ELA 004-ELA	STIC_PLASTIC_T	HERMAL	-
		060-ELA	STIC_VISCOPLAS STIC_WITH_VISC ASTIC_WITH_VISC	OSITY	PIC-
	Title Off Tims Triad DA := Axial damping factor (used for Belytschko-Schwer beam, type 2, only).	054/055	ENHANCED_CO	OMPOSITI	Forther
	Hide Shad View Wire	Reset 076-GEN	3-PARAMETER ERAL VISCOEL	ASTIC	Adding to the second
		101-GEP	ERALIZED_PHA	SE_CHAN 2000A	
		280-GLA 120-GU	SON		111
		120-GUF 120-GUF 243-HILI	SON_RCDC		1 14
		122-HIL 122-HIL	3R		1 17
	> f11 undogeom leave	203-HVS	TERETIC REINER	ORCEMEN >	6 91
	Enter data into text field	•	Fast Renderer		1
	🕂 🔿 Scrivi qui per eseguire la ricerca 🛛 😃 🗮 🧲 🥽 🏦 🎬 < 🎜 👰 🔯	x ^q ^ 🗈 <i>(</i> .	∜× 17/08/201	10 3	1



LS-PrePost(R) V4.5.21 - 31Mav2018

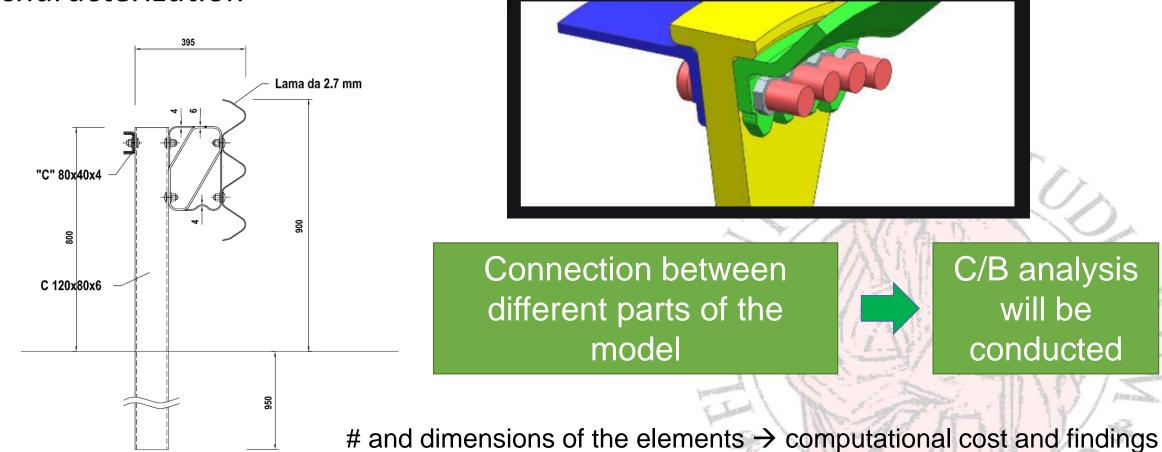
Pre-processing

FEM characterization


- 0 ×

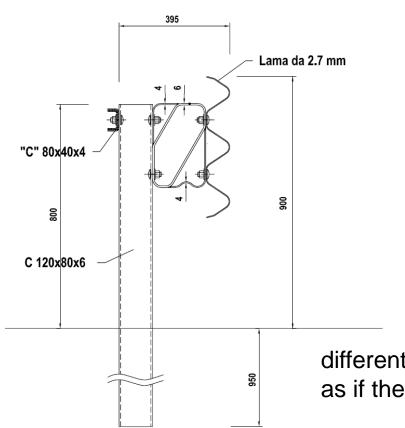
Pre-processing

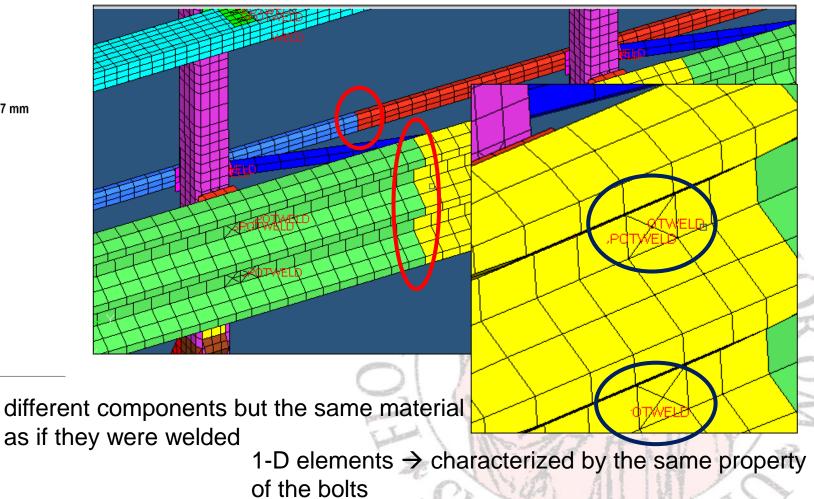
FEM characterization



Connection between different parts of the model..and with the environment

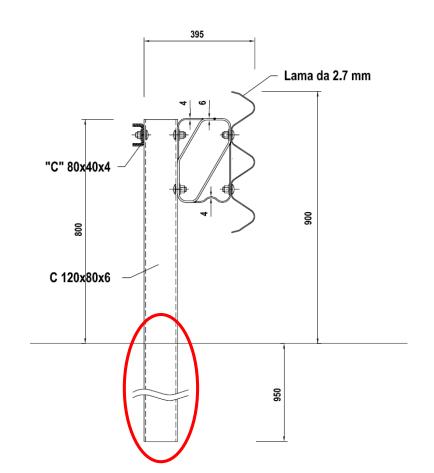
Pre-processing

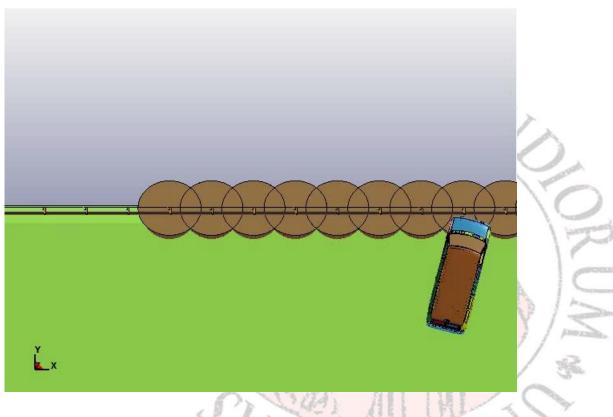

FEM characterization



Pre-processing

FEM characterization





Pre-processing

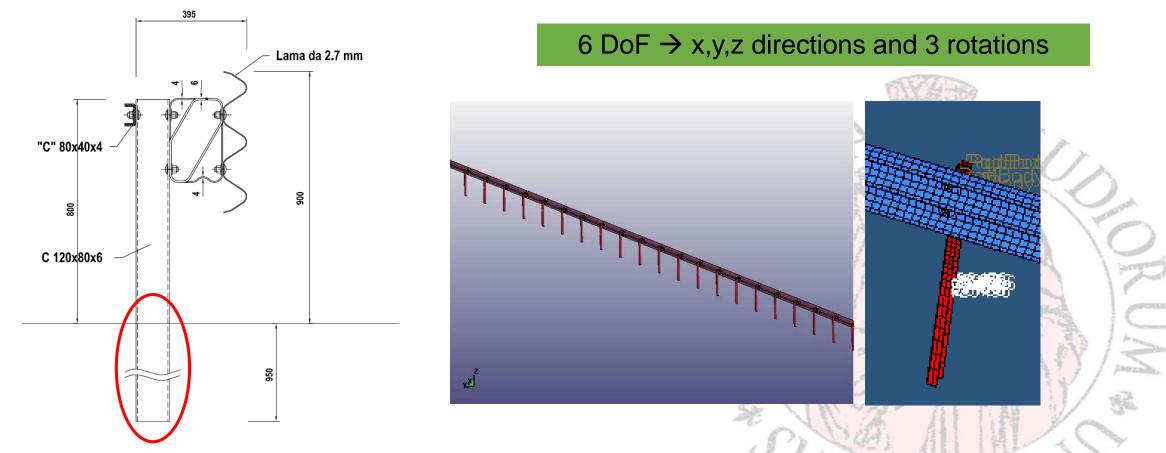
FEM characterization

Soil modelling → solid element in order to reproduce the real effect

Pre-processing

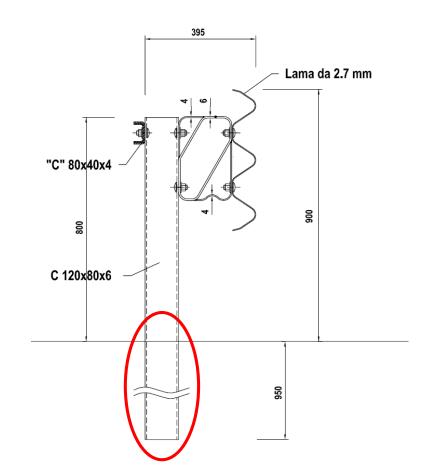
FEM characterization

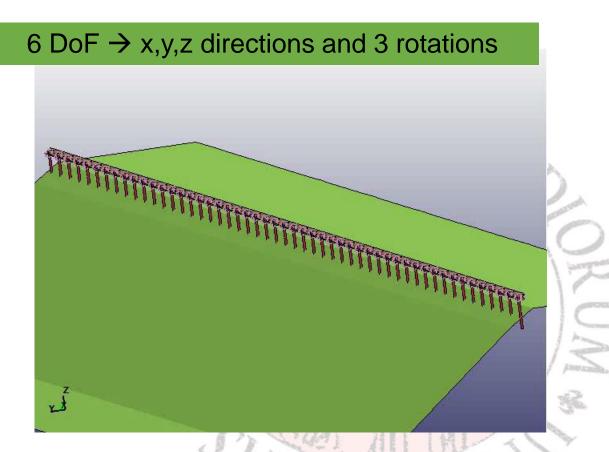
Soil modelling → solid element in order to reproduce the real effect



Pre-processing

FEM characterization

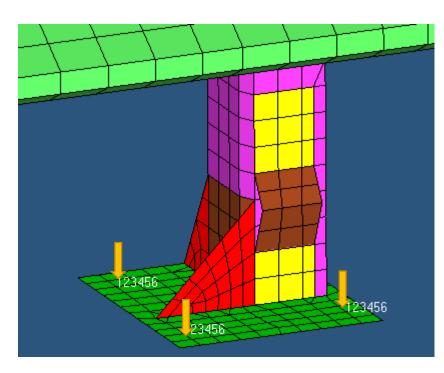

2) Definition of boundary condition

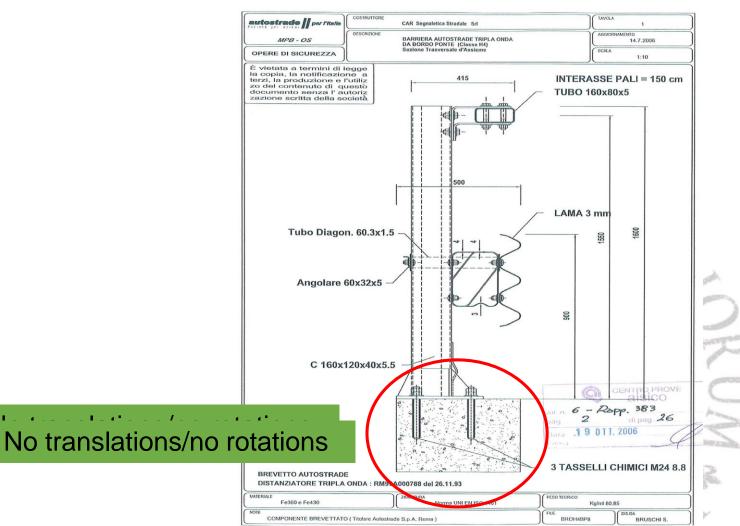


Pre-processing

FEM characterization

2) Definition of boundary condition

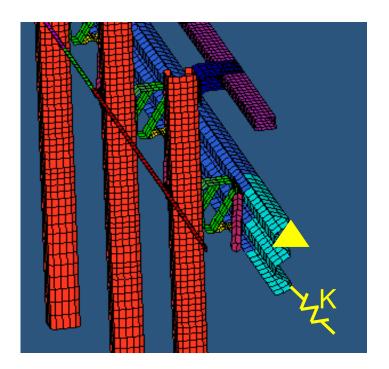




K I

Pre-processing

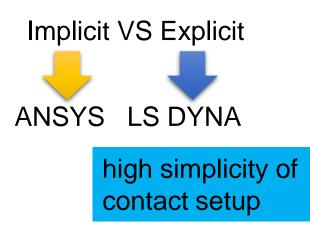
FEM characterization

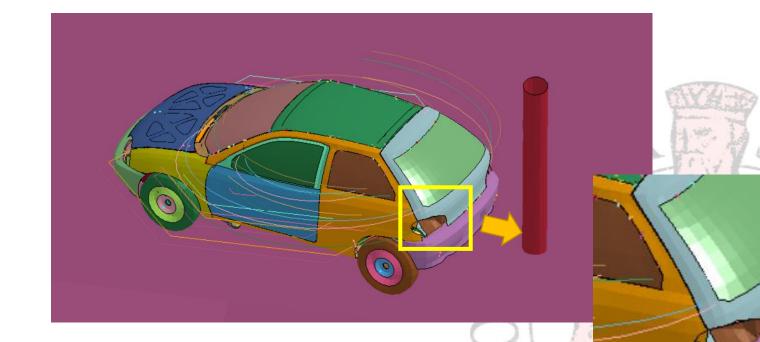


Pre-processing

FEM characterization

The selection of the type of BCs depends: 1) from the behaviour of the barrier during the crash test; 2) from the behaviour of the barrier during the accident.


the total length of the device also affects the selection of the constraint


...and what are the BCs at the end of the barrier? how is the terminal modeled?

Pre-processing

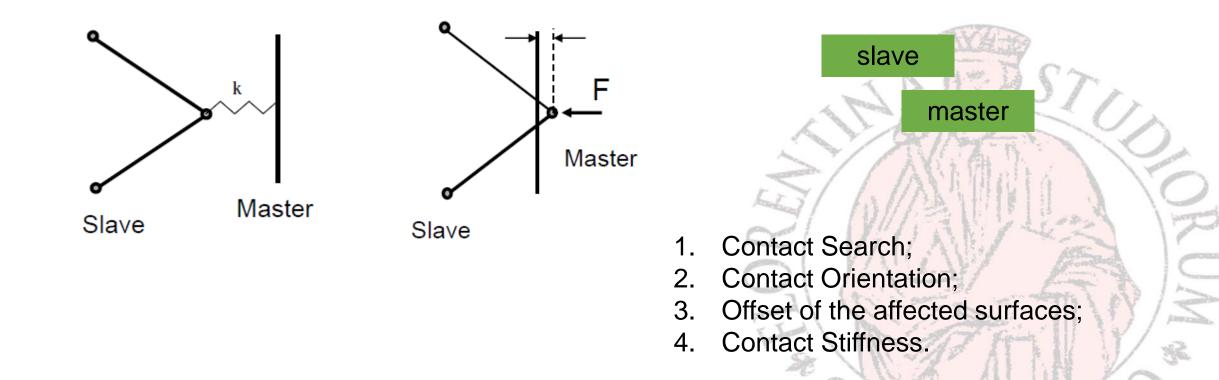
Contact \rightarrow Interaction between two (or more) different object

contact management is necessary both to represent the crash phenomena and to represent the interaction between two parts of the same "object"

Pre-processing

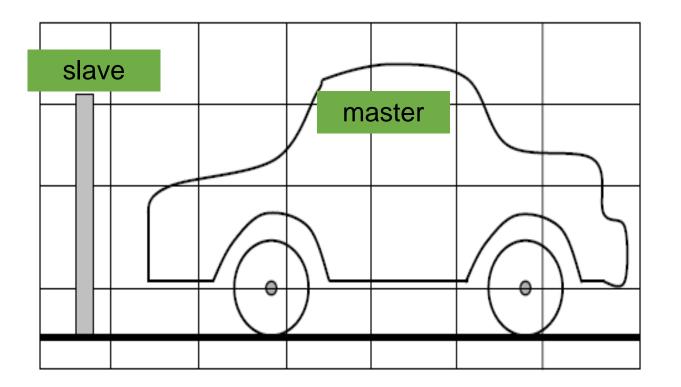
Contact \rightarrow Interaction between two (or more) different object

- Kinematic costraint Method;
- Penalty method;
- Distribuited Parameter Method.



Pre-processing

Contact \rightarrow Penalty methods


Main contact used for the reproduction of the crash phenomena

Pre-processing

Contact search

Practically, after the user has chosen the elements involved in the contact, the solver builds a grid and verify the distance between each element of the grid separately, without considering those that are far apart.

Advantages: reduction of computational cost

Pre-processing

Contact

- Kinematic costraint Method;
- Penalty method:
- Distribuited Parameter Method.

For certain types of contact, such as pure scrolling, the penalty factor method can lead to very long computational times

It imposes constraints to global equations

- Nodal Rigid Body Costraint (Vincolo rigido)
- Spot-Welds (Punto di saldatura)
- Joints (Giunti)

They differ mainly in the type of constraint offered (number of blocked degrees of freedom) and in the ability to provide or not to provide a break criterion... i.e. spotweld

 $\left(\frac{|f_s|}{S}\right)^2 \ge 1$ $\left(\frac{|f_n|}{S_n}\right)$

Pre-processing

Contact

1.

	-PrePost(R) V4.5.21 - 31May2018-64bit utente\Desktop\Monic Misc. Toggle Background Applications Settings He												- 0 ×												
		a Applications Settings Fi	NewID	Draw			Pick	Add Acce	pt Delete	Default	Done		*Airbag	*Dbase	*Mat										
				4 (400005) M				3 (4000004) VEICOLO-MANICHII 4 (4000005) MANICHINO1-MAN 5 (4000003) VEICOLO-ALBERO	*Ale	*Define	*Node														
									-	_		6 (2000001) PPP 9 (20000001) PPP	*Boundry	*Elem	*Param										
				*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_(ID/TITLE/MPP)_(THERMAL) (31) 9 (2000001) PPP 10 (2000001) PPP 10 (2000001) PPP										*Eos	*Part										
						12 (20000001) PPP 13 (20000001) PPP	*Compnt	*Hrglass	*Rgdwal																
					14 (20000001) PPP 15 (20000001) PPP	*Contact *Control	*Initial *Intgrtn	*Section *Set																	
				16 (2000001) PPP 17 (2000001) PPP										*Intrfac	*Termnt										
			CID	TITLE								18 (20000001) PPP 19 (20000001) PPP	*Def2Rg *Damping		*User										
				20 (2000001) PPP 4000001 VEICOLO-STRADA 21 (1000001) PPP						21 (10000001) PPP	1 2 3	4 5	6 7 D												
						MPP1	MPP2					24 (10000001) PPP 25 (10000001) PPP	- Keyword *Cl	1 1											
			IGNORE	BUCKET	LCBUCKET		INITITER	PARMAX	UNUSED	CPARM8		26 (1000001) PPP 27 (1000001) PPP 28 (1000001) PPP	Edit	RefBy	Done										
			0	200	0	3	2	1.0005000	0	0	\sim	29 (10000001) PPP 29 (10000001) PPP 30 (10000001) PPP	[*]AUTOMA	ATIC_NODES_	TO_SURFAC										
			UNUSED	CHKSEGS	PENSF	GRPABLE						31 (10000001) PPP 32 (10000001) PPP	T*1AUTOMA	ATIC_SINGLE	E TO SURFA										
		X	0	0	1.0000000	0						33 (10000001) PPP 34 (10000001) PPP	[*]TIED_SUR	RFACE_TO_SU	JRFACE (1)										
			1 <u>SSID</u> 350000	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	1 <u>SSID</u>	MSID	<u>SSTYP</u>	<u>MSTYP</u>	BOXID	MBOXID	<u>SPR</u>	MPR		35 (10000001) PPP			
				00 • 421	• 3	√ 2 <u>VC</u>	~ <mark>0</mark>	• 0	• 0	√ 0 <u>DT</u>	\checkmark														
			2 <u>F5</u>	FD	<u>)C</u>		VDC	 PENCHK	<u>BT</u>																
			0.60000	000 0.7000000	0.0	0.0	0.0	0	~ 0.0	1.000e+2	0				199.05										
			3 <u>SFS</u>	<u>SFM</u>	SST	<u>MST</u>	<u>SFST</u>	<u>SFMT</u>	<u>FSF</u>	<u>VSF</u>					And										
			1.0000	1.000000	60.000000	60.00000	1.0000000	1.0000000	1.0000000	1.000000	D														
For AUTOMATIC_SURFACE_TO_SURFACE, AUTOMATIC_SINGL		Triad Bcolr U	lı 🗌 Thern	nal T_Friction		AB	ABC	ABCD					TI.												
contact and AUTOMATIC_NODE_TO_SURFACE contact, penetration	Wire Feat	E									~	-		No. Page											
elements and external faces of 2D continuum elements is prevented by parts in the slave part set are checked for contact with parts in the master		Total Card: 31 Smallest ID: 1 Largest ID: 35 Total deleted card: 0										-		>											
contact is checked for any part in both sets. If the slave part set is omitte		India cardi 51 Simanesi (6, 1) Largest (6, 5) Total deleted Cardi, 0												Con.											
checked for contact. If the master part set is omitted, it is assumed to be it	identical to the											v c 3			constitute of										
slave part set.			L																						
>						0.522500 0.013500		15;				0			>										
	zoomhere 0.089474 0.204340 0.028147;													-											

📓 LS-PrePost(R) V4.5.21 - 31May2018-64bit utente\Desktop\Monica\perizie con simulazioni\terni\Main.dyn

Pre-processing

*Initial ...velocity

File Misc.	Toggle I	Background	Application	ns Settings	Help																
TC 4.2	.80																		*Airbag	*Dbase	*Mat
																			*Ale	*Define	*Node
																			*Boundry	*Elem	*Param
												*Cnstrnd	*Eos	*Part							
													*Compnt	*Hrglass	*Rgdwal						
																			*Contact	*Initial	*Section
						28	3	Keyword								1			>		*Set
					/•• ==		a la	NewID	Draw		_	Pick	Add	Accept	t Delete	e Defaul	t Dor	e 1 2		Intrfac	*Termnt
				1	DX			□ ∪	se *PARAMETER						(Subsys	: 2)	Setting	3		Load	*User
				R	$ \geq $	$A \sim$	-				*INITIAL_VELO	CITY_GENER	RATION (3)						4 5	6 7 D
						14												Â		RefBy	Done
					1		1 C														Model
																		- 11		ENERAT	ION (3)
						1 HE		1 <u>NSID/PID</u>	<u>STYP</u>	OMEGA	<u>vx</u>	<u>VY</u>	<u>VZ</u>		IVATN	ICID					
							and the second s	20000179	• 3	∨ 0.0	1.305e+04	-4750.2	808 0	.0	0	~ 0					
								2 <u>XC</u>	<u>YC</u>	<u>ZC</u>	<u>NX</u>	<u>NY</u>	<u>N7</u>	Ľ	PHASE	IRIGID					
								1799.999	9 -3240.000	-1100.0000	0.0	0.0	1	.0000000	0	~ 0					
								COMMEN	т.												
								COMMEN									^				
																	~				
Title	Off	Tims	Triad	Bcolr	Unode	Frin	Isos														1
Hide	Shad	View	Wire	Feat	Edge	Grid	Mesh														
	51144				Luge		mesh											~			
								Total Card: 3	Smallest ID: 1 La	argest ID: 3 Total de	eleted card: 0							\sim			1
																		~			
								I	auat 0 533500 0 0	42500 0 076254 0 04	0445.								•		
>									zoomhere 0.08947	13500 0.076254 0.84 74 0.204340 0.028147	9115; 7;								^		
												1	17	221	(19)	11		1	and a	1	N.

*Define curve...

...and practically....

