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Topics of the seventh lesson

• The design of anisotropic laminated structures
as an optimization problem
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About optimization techniques

Because the design of laminated anisotropic structures is a difficult
task, the basic idea is to transpose it into an effective, proved
theory: that of mathematical optimization.

In such a theoretical framework it is possible to give a correct and
clear mathematical formulation of the design problems and also to
find effective numerical tools for the resolution of such problems.

Before going on, it is worth to recall some basic aspects of
optimization theory and introduce some numerical tools
particularly suited for the problems of laminates design.
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Types of optimization problems

Generally speaking, an optimization problem can be always reduced
to a form of the type

min
xi∈Ω

f (xi ), i = 1, ..., n,

subjected to gj(xi ) ≤ 0, j = 1, ..., p,

and to hk(xi ) = 0, k = 1, ..., q.

(1)

with:

• xi : design variables

• f (xi ): objective (or cost) function

• gj(xi ): inequality constraints

• hk(xi ): equality constraints

The set Ω of the points xi that satisfy all the constraints is the
feasible domain.
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In several problems, a state equation is one of the equality
constraints; it states a necessary condition to be satisfied by the
solution, e.g. in mechanics the equilibrium equation, a condition
that the optimal solution must satisfy (in some formulations, such
a state equation can be put in variational form, for instance using
the principle of minimum total potential energy, and it can enter
directly the objective function, leading so to a double minimization
problem).

When there are more than one conflicting objectives to be
minimized, the problem is multiobjective.

A problem is continuous if xi ∈ R ∀i = 1, ..., n, discrete if
∃i : xi /∈ R.
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Convexity

Convexity is one of the most important characteristics of
optimization problems.

The reason is that convexity ⇒ uniqueness of the minimum.

An optimization problem is convex ⇐⇒ the objective function
f (xi ) and the feasible domain Ω are convex.

A domain Ω is convex ⇐⇒ ∀x1, x2 ∈ Ω, x1 6= x2,

x = (1− t)x1 + t x2 ∈ Ω ∀t ∈ [0, 1]. (2)

The intersection of two or more convex domains is a convex
domain.
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A function f (xi ) : Ω→ R is convex on the convex domain Ω ⊂ Rn

⇐⇒ ∀x1, x2 ∈ Ω, x1 6= x2

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2) ∀λ ∈ (0, 1). (3)

The function f (xi ) is strictly convex if strict inequality holds.

For n = 1, a convex function is below the line joining x1 and x2.38 3 Basics of Convex Programming

Fig. 3.3 A strictly convex (left), a convex (middle), and a nonconvex (right) function

Example 3.1 The function f : R → R, f (x1) = x2
1 is strictly convex, but

f : R2 → R, f (x1, x2) = x2
1 is only convex. The function f : R2 → R, f (x1, x2) =

x1x2 is neither convex nor concave.

By applying the definitions of convex sets and functions, one easily obtains the
following lemma.

Lemma 3.1 (i) The set S = {x ∈ X : gi(x) ≤ 0 , i = 1, . . . , l} is convex if the func-
tions gi : Rn → R, i = 1, . . . , l are convex.

(ii) Let S be a convex set. If f : S → R and g : S → R are convex and h : S → R
is strictly convex, then αf is convex, where α ≥ 0 is an arbitrary scalar, f + g is
convex and f + h is strictly convex.

If both the objective function and the feasible set of (P) are convex, the problem
is said to be convex. The lemma above then states that (P) is convex if the objective
function and all constraint functions gi, i = 1, . . . , l, are convex.

As previously mentioned, local minima are also global minima for convex
problems. However, as indicated by the convex problems in (3.1) and (3.2), con-
vex problems need not have a solution (you are to demonstrate the convexity of
these problems in Exercise 3.1). When the feasible set is compact, i.e. bounded and
closed, a solution always exists (this is true for any continuous objective function,
not necessarily convex). If the objective function is strictly convex and the feasible
set is convex, there exists at most one solution. If, in addition, the feasible set is
compact, there exists exactly one solution. For example, if the strictly convex func-
tion 1/x is minimized over the closed, but unbounded convex set x ≥ 1, no solution
exists. If the same function is minimized over the compact set [1, 2], the solution
is x∗ = 1/2. Note that the convexity of the feasible set plays a crucial role here; for
example if the strictly convex function x2

1 + x2
2 is minimized over the nonconvex,

compact set 1 ≤ x2
1 + x2

2 ≤ 2, there is an infinite number of global minima, namely
all points (x∗

1 , x∗
2 ) with (x∗

1 )2 + (x∗
2 )2 = 1.

In order to determine whether a continuously differentiable function is convex,
we may study its gradient.

Theorem 3.1 Let f : S → R, where S is convex and f is continuously differ-
entiable. Then f is (strictly) convex if and only if the gradient ∇f is (strictly)
monotone.
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Descent methods
The basic idea for convex problems is to start from a given point
and to go down until the minimum.

Because the problem is convex, one arrives always to the minimum.

The descent methods make use of the derivatives of f (xi )⇒ it can
be used only with fonctions at least C1, so it cannot be used for
discrete problems.
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There are different descent methods; the basic one is the steepest
descent method.

It is composed of different steps:

• choice of a feasible starting point x0
i ∈ Ω;

• for each step k, computation of the steepest descent direction
dk
i ;

• for each step k , computation of the step length tk ;

• calculation of the new point xk+1
i = xki + tkdk

i .

• stop when dk
i = 0∀i .

By the same properties of the gradient, di = −∇i f .

The step length can be calculated by different methods:
dichotomy, quadratic interpolation, golden section etc.
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Steepest descent method (SDM 3)

� La SDM est une méthode à convergence garantie, mais lente: elle 
avance vite au début, puis la vitesse diminue: c’est une bonne 
méthode locale, mais pas globale

� En fait, on peut démontrer que dans la SDM il est

� Les directions de recherche consécutives 
sont donc orthogonales entre
elles, et chaque dk est orthogonal à
la ligne de niveau de f(x) par xk et 
tangent à celle par xk+1

01
T =+kk dd

x0

t0 d0

t1 d1

x1

x2

x3

It can be shown that dk · dk+1 = 0→ the method is not very
effective.

Other descent methods improve the descent track: quasi-Newton,
conjugate gradient etc.

Using descent methods with non-convex functions can lead to local
minima: the starting point Q2 leads to the local minimum P2,
while Q4 leads to the global minimum P4.
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When constraints are imposed, the minimum can be on the
boundary and it can corresponds to points where the gradient is
not null.

Different methods can be used to take into account for constraints:
barrier, penalization etc.
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Metaheuristics
The true drawback of descent methods is the sensitivity to the
initial point

If the problem is non-convex, the convergence to a true global
minimum is not guaranteed.

To counter this problem, the basic idea is to work not with a
unique point, but with a population of individuals.

An individual is a vector xi , i = 1, ..., n candidate to be a solution
of the problem.

Letting evolve a population of potential solutions help in reaching
the global minimum.

The dynamics that inspires the displacement of the population
throughout the feasible domain is called a metaheuristic.
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A metaheuristic is hence a rationale inspired by a given
phenomenon that can be biological, social or physical.

There are, in fact, several different metaheuristics:

• simulated annealing, inspired by metallurgy of alloys;

• ant colonies, inspired by the social dynamics of ants;

• neural networks, inspired by the brain functioning;

• tabu search, inspired by social rules;

• genetic algorithms, inspired by Darwinian selection;

• particle swarm optimization (PSO), inspired by the dynamics
of flocks of birds or shoals of fishes.

Metaheuristics are order zero methods: they do not need the
calculation of the derivatives of the objective function.

As such, they can be used also with discrete problems.
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Genetic algorithms

Genetic Algorithms (GAs) are perhaps the most used metaheuristic.

GAs were introduced by Holland in 1965 and are inspired to the
mechanism of natural selection (C. Darwin, The origin of species,
1859).

The basic idea is that of letting evolve a population following the
rules of the survival of the fittest (Darwinian selection).

The dynamics of the changes of the population from a generation,
i.e; an iteration of the algorithm, to the following one are based
upon the laws of genetics.

The success of GAs is mainly due to their robustness and
effectiveness in dealing with non convex problems.
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The general scheme of a classical GA is rather simple:
6 CHAPTER 1. INTRODUCTION TO BIANCA

Figure 1.1: Standard GA’s scheme.

1.2 Background and mathematical formula-

tions

A general optimization problem is formulated as follows:

min
x

f (x)

subject to :

⎧
⎨
⎩

gi (x) ≤ 0 i = 1, ..., r
hj (x) = 0 j = 1, ..., m

xL ≤ x ≤ xU

(1.1)

where vectors and matrix terms are marked in bold typeface. In this formu-
lation x is the n-dimensional vector of design variables, while xL and xU are
the n-dimensional vectors representing the lower and upper bounds of the
design variables, i.e. the design space. Design variables can be of different
type: continuous, regular discrete, scattered discrete or grouped.
The optimisation goal is to minimize the objective function f (x) subject to
a given number of constraints: gi (x) is the r-dimensional vector of inequality
constraints, while hj (x) is the m-dimensional vector of equality constraints.

The optimization problem type can be characterized both by the types
of constraints present in the problem and by the linearity or non-linearity
of the objective and constraint functions. A problem where at least some of
the objective and constraint functions are non-linear is called a non-linear
programming (NLPP) problem. These NLPP problems predominate in en-
gineering applications and are the primary focus of BIANCA 3.0.

In BIANCA the equality and inequality constraints are treated by means
of a particular strategy which is based on the combination between classi-

Figure: General scheme of a classical GA
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The adaptation of each individual is an operation aiming at giving
a ranking of individuals with respect to the objective: better
individuals, i.e. individuals for which the objective has a better
value, have a better fitness ϕ.

There are different ways to introduce a fitness, normally ϕ ∈ [0, 1]:
0 corresponds to the worst individual, 1 to the fittest one.

A classical way is to define the fitness as

ϕ =

(
1 +

f −minpop f

minpop f −maxpop f

)c

, c ≥ 1. (4)

Coefficient c is used to tune the selection pressure.

Defined in this way, 0 ≤ ϕ ≤ 1.
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The Darwinian idea is that individuals with a better fitness, i.e.
best adapted to environment, have a greater chance to survive a
longer time, so to reproduce themselves.

Hence, in the selection phase best fitted individuals have a greater
chance to be selected.

There are different ways to operate selection; in all the cases, a
couple of individuals, the parents, is selected to be reproduced in
the subsequent phases.

Two widely used selection strategies are tournament and roulette
wheel.
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In the tournament selection, k individuals are randomly chosen and
only the best one is selected; doing this N times, one gets N
parents; these are then coupled randomly to generate N offsprings.

In roulette wheel selection, N/2 couples are randomly selected on
the base of their fitness: the higher the fitness ϕi of individual i ,
the higher its probability pi to be selected for reproduction:

pi =
ϕi∑N
j=1 ϕj

. (5)
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Sélection par roue de lotérie biaisée

� La probabilité de sélection d’un 
individu est

� La fonction de distribution de la 
probabilité de sélection est donc la 
fonction de fitness f normalisée

� Les n/2 couples sont tirées aux hasard, 
par rotation de la roue
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Coding individuals: phenotypes and genotypes
In a classical GA, each real or discrete variable, the phenotype, is
coded binary to obtain its genotype.

It is hence represented by a chain of 0s and 1s: the DNA chain of
an individual.

The genetic operations are done on the binary chains of two
individuals, the parents, to obtain (hopefully) two better offsprings.

There are two classical genetic operations: crossover and mutation.

both of them are used to generate offsprings from selected parents;
because of selection, there is a genetic improvement of the
population, i.e., the objective function is globally improved.

In this way, from a generation to the following one, more and more
fitted individuals form the populations → the probability to have
better individuals, i.e. phenotypes approaching the minimum,
increases.
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Genetic operations

Classical binary operations are done on the genotypes, i.e. ont he
binary strings. Cross-over on genes (1 gene=1 design variable)

Cross-over allows to obtain 2 offsprings from two selected parents.

The crossover point is randomly selected
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Gene mutation:

Mutation is introduced to guarantee a certain biodiversity, which
mathematically speaking serves to better explore the feasible
domain and avoid local minima (premature convergence).

The binary digit to be mutated is randomly selected.

A third operator is often used: elitism. It consists in preserving the
best individual of each generation, that replaces the worst one of
the offsprings.
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An exemple of non convex function
Problem: to solve the equation y = cos 2x in [0, 2π]. Th problem
can be seen as: find the minimum of y2.

42
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Un exemple de NLPP non convexe 

y = cos 2x dans [0, 2π]

y

f

y2
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The GA BIANCA
BIANCA (Biologically Inspired ANalysis of Composite
Assemblages) is a GA with some special characteristics, specially
conceived for highly non convex constrained modular problems

Its main features are

• multi-chromosome and multi-gene

• multi-population with migration operator

• virtual binary coding

• Boolean genetic operations over each gene

• elitism

• constraints handled by ADP (Automatic Dynamic
Penalization) method

• it makes evolve simultaneously species and individuals, thanks
to special crossing and mutation operators

• it can be interfaced, in principle, with any other code (namely
ABAQUS, ANSYS, MATLAB etc.)
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BIANCA has a special structure of the information that allows for
a deep mixing of genomes and for the simultaneous selection of
species and individuals:

Remarque: stratifiés avec n 
différent appartiennent à 
différentes espèces  
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Special genetic operators are introduced in BIANCA for the
selection of the species.

Different species are characterized by a different number of
chromosomes.

This is done to deal with new problems like those concerning
modular systems.

1.5. EVOLUTION OF INDIVIDUALS AND SPECIES IN BIANCA 41

Figure 1.8: Crossover among species: (a) parents couple, (b) effect of the shift operator,
(c) crossover on homologous genes, (d) children couple and (e) effect of the chromosome
reorder operator.

1.5.2 The new mutation phase and the role of Chromosomes
Number Mutation and Addition-Deletion Operators

Mutation is articulated in two phases: at a first stage, it acts on the number of chromo-
somes and then on the genes values.

During the first phase the chromosomes number is arbitrarily changed by one at time
for each individual, with a given probability (pmut)chrom, then the chromosome addition-
deletion operator acts on the genotype of both individuals, by adding or deleting a chromo-
some. The location of chromosome addition-deletion is also randomly selected. Naturally,
if the chromosomes number is equal to the maximum one, only deletion can occur. Sim-
ilarly if the chromosomes number is equal to the minimum one, only addition can be
applied. In the case shown in Fig. 1.9 (a) the number of chromosomes of C1 is decreased

42 1. On the use of genetic algorithms in engineering applications

by one and the chromosome deletion is randomly done at position 3, while the number

of chromosomes of C2 is increased by one and a new one,
{

(αa)
C2 , (βa)

C2
}

, is randomly

sorted and randomly added, in this example in correspondence of position 2.

Figure 1.9: Mutation of species: (a) mutation of the number of chromosomes and effect of
the chromosome addition-deletion operator, (b) effect of the mutation operator on every
gene

During the second phase, the mutation of the genes value takes place, for instance
one-bit change, with a probability pmut, after a rearrangement of chromosomes position.
In the example of Fig. 1.9 (b) the mutation occurs on the gene (α2)

C1 of the individual
C1 and on the genes (α1)

C2 and (β3)
C2 of the individual C2.

1.6 Handling constraints in BIANCA

1.6.1 Literature overview on constraints-handling techniques

Several authors put an effort in developing appropriate and effective strategies, in the
framework of GAs, in order to deal with constrained optimisation problems. A certain
number of surveys on constraint-handling techniques is available in the specialised liter-
ature, see for example [12, 54, 55, 56]. In this Section, we do not provide a complete
and exhaustive survey on constraint-handling techniques that were developed in the last
years to handle all types of constraints (linear, non-linear, equality and inequality) in the
context of GAs. Rather, we focus our attention on penalty-based strategies for handling
constraints.

The most common approach in the GA community to handle constraints (particu-
larly, inequality constraints) consists in using penalties. Penalty functions were originally
proposed by Courant in the 1940s [57] and later generalised by Carroll [58] and Fiacco
and McCormick [59]. The idea that underlies such approaches consists in transforming
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An exemple of non convex constrained function

Problem: find the minimum of

f (x1, x2) = −eka
√

x2
1 +x2

2 sin ax1 cos 2bx2, (6)

in the domain

Ω = {(x1, x2) : 0 ≤ x1 ≤ 4π, 0 ≤ x2 ≤ 2π}, (7)

with the constraint

g(x1, x2) = ecx
2
1 − x2 − 1 ≤ 0, (8)

with a = 1., b = 0.6, c = 0.012, k = 0.2.
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The function is non convex, different local minima exist in Ω but
the absolute admissible minimum is on the boundary.
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The GA BIANCA has been used with the following parameters:

• 4 populations, each one of 200 individuals

• 400 generations

• probability of cross-over: 0.8

• probability of mutation: 0.04

• isolation time: 20 generations

• elitism

• selection type: roulette wheel
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Best solution: p = (10.711, 2.966), f = −8.099.

Convergence diagrams
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Dynamics of the populations
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The PSO code ALE-PSO

The code ALE-PSO is a Particle Swarm Optimization code is a
classical PSO code (Eberhart and Kennedy, 1995), but with
adapting coefficients, that evolve through a prescribed scheme,
specified by the operator

PSO are inspired by and they mimic in an algebraic way. the social
behavior and dynamics of groups of individuals (particles), such as
the flocks of birds, whose groups displacements are not imposed by
a leader: the same overall behavior of the flock guides itself.

Their main advantage is their true simplicity: the updating rule is

ukt+1 = r0c0u
k
t + r1c1(pkt − xkt ) + r2c2(pgt − xkt )

xkt+1 = xkt + ukt+1, k = 1, ...,m, t = 1, ..., s
(9)
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• xkt+1: vector representing the position, in the n-dimensional
problem space, of the k-th particle in a swarm of m particles,
at the time-step t + 1 of s total steps;

• ukt+1: displacement (often called velocity) of the particle xk

from its position xkt at the time step t to its updated position
xkt+1 at the time-step t + 1;

• pkt : vector recording the best position occupied so far by the
k-th particle (personal best position); in a minimization
problem for the objective function f (x), pkt is updated as
follows:

pkt+1 =

{
pkt if f (xkt+1) ≥ f (pkt )

xkt1
if f (xkt+1) < f (pkt )

(10)
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• pgt : vector recording the best position occupied so far by any
particle in the swarm (global best position); in a minimization
problem for the objective function f (x), pgt is updated as
follows:

pgt+1 ∈ {pkt+1, k = 1, ...,m} such that

f (pgt+1) = min
k=1,...,m

f (pkt+1)
(11)

• r0, r1, r2: independent random coefficient uniformly distributed
in [0, 1]

• c0, c1, c2: inertial, cognition and social parameters

In ALE-PSO c0, c1, c2 are updated during iterations using a power
law
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An exemple of unconstrained function
Problem: find the minimum of

y = x2
1 + x2

2 + x2
3 . (12)

We have used AE-PSO with a swarm of 200 particles and with 50
iterations.

The best solution is found after 25 iterations.
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The dynamics of the swarm:
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An exemple of constrained function
We solve with ALE-PSO the same problem previously solved with
BIANCA, eq. (6).

The constraint is handled through a death-penalty method.

We have used a swarm of 100 particles for 100 iterations.

The best solution is p = (10.699, 2.954), with f = −8.096 found
after 10 iterations.
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The dynamics of the swarm:
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Optimisation of anisotropic laminates
• Typical problems:

min
x

f (x) (13)

x : design variables (typically: n, δj , thicknesses etc.)
usually, the material is chosen a priori → the isotropic
part is completely determined by this choice

• Be:

P = {Pi , i = 1, ..., 12} = {R0,R1, Φ0 − Φ1, Φ1}A,B,D (14)

T0 and T1 do not appear because we consider here only
laminates with identical plies

• Key points:
A = A(Pi ), B = B(Pi ), D = D(Pi ), i = 1, ..., 12,
unique correspondence
functions

Pi = Pi (δj), i = 1, ..., 12, j = 1, ..., n (15)

are not bijective
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An optimisation naturally sequential

• Step 1: the structure problem

look for Pi = Popt
i ∈ R ⊂ R12 : (16)

f (Popt
i ) = min

Pi∈R
f (Pi ) (17)

• Step 2: the constitutive law problem

find δsolj ∈ ∆ ⊂ Rn : (18)

ϕ(δsolj ) = min
δj∈∆

ϕ(δj), with (19)

ϕ(δj) =
12∑

k=1

(
Pi (δj)− Popt

i

)2
(20)
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Some remarks on the structure problem:

• it has a mathematical structure that is problem dependent:
the type of the objective functional depends upon the problem

• some constraints are normally part of it, specifying some
requirements of different type: technical, mathematical,
mechanical etc.

• the geometrical bounds are constraints that are always to be
added to it; this is needed to have optimal properties that can
be really obtained by a laminate

• because the geometrical bounds are convex but non linear, it
is never linear but it can be convex

• its dimension is problem dependent; anyway, in the case of
design of orthotropic and constant A or D, its dimension is
reduced to only 3 design variables if the polar formalism is
used
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Some remarks on the constitutive law problem:

• it is always highly non convex, due to the dependence of the
elastic tensors upon the orientations (fourth powers of circular
functions of the orientations)

• its dimension is equal to n − 1

• it can be a continuous or a discrete one

• some constraints can be added to it

While the numerical approach for solving the structure problem is
not unique and special procedures can exist for different problems,
the best way for solving the constitutive law problem is always a
metaheuristic: genetic algorithms (GAs), particle swarm
optimization (PSO), ant colonies, (AC), simulated annealing (SA)
and so on
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The constitutive law problem
The objective is to have a general approach for designing laminates
with some given properties in a completely general way, i.e.
without simplifying assumptions

In fact, only in this way it is possible to obtain a true optimal
solution

The idea is to formulate the problem as a problem of minimal
distance of tensors: the optimal laminate is the one whose tensors
have a distance equal to zero from the target tensors

The target tensors have been determined previously, in some way

Typically, for simple problems, they can be found easily, while
generally speaking they are determined as a solution of the
structure problem

Among the properties to be designed, there are the elastic
symmetries, typically orthotropy etc, uncoupling,
quasi-homogeneity, thermal properties etc.
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As we have already seen, when only the elastic properties are to be
optimized, then the problem can be put in the form

find δsolj ∈ ∆ ⊂ Rn : (21)

ϕ(δsolj ) = min
δj∈∆

ϕ(δj), with (22)

ϕ(δj) =
12∑

k=1

(
Pi (δj)− Popt

i

)2
(23)

The set ∆ of admissible orientations δj depends upon the problem
at hand and it can be continuous, regularly or irregularly discrete

The design variables are the orientations δj , j = 2, ...n; δ1 = 0 to
fix the frame

The problem is highly non convex and the solution never unique

This is important, because it allows to put some constraints on the
second and not on the first step
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Examples of design of the constitutive law
Example 1: 10-ply T300/5208 carbon-epoxy laminate with:

• B = 0⇒ RB
0 = RB

1 = 0
• RA

0 = RD
0 = 0

• discrete angles (each 1◦).

The best solution found by ALE-PSO (swarm of 100 particles for
100 iterations) is
[31◦/− 22◦/90◦/− 24◦/19◦/− 55◦/90◦/− 37◦/44◦/0◦]
Residual: 0.11× 10−4.
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The dynamics of the swarm:
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The directional diagrams of the Cartesian components
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Example 2: a 12-ply carbon-epoxy fully isotropic uncoupled
laminate.

• B = 0⇒ RB
0 = RB

1 = 0
• RA

0 = RD
0 = RA

1 = RD
1 = 0

The best solution found by ALE-PSO (swarm of 200 particles for
200 iterations) is
[−67.3◦/54.3◦/0.8◦/− 18.7◦/43.7◦/90◦/− 24.3◦/
−69.6◦/32.2◦/− 69.1◦/55.5◦/− 10.4◦]

Residual: 0.57× 10−3.
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The directional diagrams of the Cartesian components
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Example 3: 12-ply T300/5208 carbon-epoxy laminate with:

• A ordinarily orthotropic ⇒ ΦA
0 − ΦA

1 = KAπ

4
• B = 0⇒ RB

0 = RB
1 = 0

• δj ∈ {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, ....}
• Em

max ≥ 100 GPa (= 0.55 E1)

• Em
min ≥ 40 GPa (= 3.88 E2)

Best solution found by GA BIANCA:
[0◦/30◦/15◦/15◦/90◦/75◦/0◦/45◦/75◦/0◦/15◦/15◦]
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Example 4: 12-ply T300/5208 carbon-epoxy laminate with:

• A isotropic ⇒ RA
0 = RA

1 = 0
• D ordinarily orthotropic with KD = 0⇒ ΦD

0 = ΦD
1

• B = 0⇒ RB
0 = RB

1 = 0
• δj ∈ {−90◦, 90◦}
• isotropic tensor of thermal expansion coefficients
• cylindrical bending under a thermal gradient

Best solution found by GA BIANCA:
[0◦/− 29.9◦/44.3◦/− 61.8◦/89.3◦/61.8◦/31.5◦/− 89.1◦/33.4◦/−
71.7◦/− 11.6◦/− 28.1◦]
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Example 5: 12-ply T300/5208 carbon-epoxy rectangular simply
supported laminate with:

• B = 0⇒ RB
0 = RB

1 = 0

• D ordinarily orthotropic ⇒ ΦD
0 − ΦD

1 = KD π

4
• Orthotropy axes aligned with the plate’s sides ⇒ ΦD

1 = 0
• Frequency of the first mode ω1 ≥ 150 Hz

The best solution found by the
code ALE-PSO is

[−66.1◦/66.5◦/44.8◦/− 36.4◦/
48.5◦/− 5.7◦/77.6◦/− 90◦/
−84.5◦/38.5◦/57.5◦/− 46◦/]
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Figure 6. Directional diagrams of Axx* and Dxx* (Bxx*a 0) for example 2 (GPa). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Example 2: technical, Cartesian and polar constants of the best solution laminate; 
Cij is a generic Cartesian component (GPa). 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Example 3 

This is the case of a 8-ply laminate designed to be orthotropic in bending, uncoupled and with the 

Young’s modulus in the directions x and y constrained to satisfy respectively the conditions Ex �E1=90 

GPa and Ey �E2=90 GPa. In addition, it is required that the orientation angles take values each 5°, i.e. 

0°, 5°, 10° and so on. The objective function is the same of example 2, but now the constraints to be 

satisfied are, see [25], 
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 Ex Ey Gxy Qxy� Cxx Cyy Css Cxy Cxs Cys 

A* 42.39 81.15 29.11 0.26 49.38 96.79 30.17 25.89 3.94 9.91 

B* - - - - �7.3×10�4 �8.5×10�4 4.6×10�3 4.6×10�3 3.8×10�3 �1.2×10�2 

D* 27.38 68.38 36.42 0.34 38.21 95.43 36.43 32.15 0 0 

 T0 T1 R0 R1 )0� )1�

A* 26.88 24.74 4.44 6.86 �34.43° 74.85°

B* 0 0 9.3×10�6 2.3×10�6 - - 

D* 26.88 24.74 9.55 7.15 45° 90° 

Axx* 

Dxx* 

x 

y 
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A complete problem: structure plus laminate problem

This is an example of a complete case: the structure problem
followed by the research of a suitable laminate

Problem: maximize the bending of a laminate produced by PZT
actuators.

Requirements:

• cylindrical bending

• B = 0⇒ RB
0 = RB

1 = 0

• D ordinarily orthotropic
⇒
ΦD

0 − ΦD
1 = KD π

4
• δj discretized at 5◦

Application to a T300/5208 carbon-epoxy 16-ply laminate
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The structure problem: it can be formulated as follows (D = D−1):

max
δj

f (δj) = D12 +D22

with

g(δj) = D12 +D11 = 0

(24)

The solution of the structure problem in this case can be found by
hand and gives to the constitutive law problem the optimal values
RD

0 opt and RD
1 opt

The constitutive law:

• RD
0 = RD

0 opt

• RD
1 = RD

1 opt

• RB
0 = 0

• RB
1 = 0

• ΦD
0 −ΦD

1 = KD π

4

→

min
δj
ϕ(δj) =(RD

0 − RD
0 opt)

2 + (RD
1 − RD

1 opt)
2+

RB
0

2
+ RB

1

2
+ (ΦD

0 − ΦD
1 − KD π

4
)2

(25)
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Best solution found by code ALE-PSO:

[−20◦/5◦/0◦/15◦/15◦/5◦/40◦/45◦/90◦/
−10◦/20◦/− 15◦/10◦/5◦/20◦/− 15◦]
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