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Topics of the seventh lesson

e The design of anisotropic laminated structures
as an optimization problem

2/53



About optimization techniques

Because the design of laminated anisotropic structures is a difficult
task, the basic idea is to transpose it into an effective, proved
theory: that of mathematical optimization.

In such a theoretical framework it is possible to give a correct and
clear mathematical formulation of the design problems and also to
find effective numerical tools for the resolution of such problems.

Before going on, it is worth to recall some basic aspects of
optimization theory and introduce some numerical tools
particularly suited for the problems of laminates design.

3/53



Types of optimization problems

Generally speaking, an optimization problem can be always reduced
to a form of the type

inf(x; =1,...

min (xi), i=1,...,n,

subjected to gj(x;) <0, j=1,...,p, (1)
and to hx(x;) =0, k=1,...,q.

with:
e x;: design variables
e f(x;j): objective (or cost) function
e gi(x;): inequality constraints
o hi(x;): equality constraints

The set Q of the points x; that satisfy all the constraints is the
feasible domain.
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In several problems, a state equation is one of the equality
constraints; it states a necessary condition to be satisfied by the
solution, e.g. in mechanics the equilibrium equation, a condition
that the optimal solution must satisfy (in some formulations, such
a state equation can be put in variational form, for instance using
the principle of minimum total potential energy, and it can enter
directly the objective function, leading so to a double minimization
problem).

When there are more than one conflicting objectives to be
minimized, the problem is multiobjective.

A problem is continuous if x; € R Vi =1, ..., n, discrete if
i x; ¢ R.
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Convexity
Convexity is one of the most important characteristics of
optimization problems.
The reason is that convexity = uniqueness of the minimum.

An optimization problem is convex <= the objective function
f(x;) and the feasible domain 2 are convex.

A domain Q is convex <= Vxi1, xo € Q, x1 # xo,
x=(1—-txx+txecQVtelo1]. (2)

The intersection of two or more convex domains is a convex
domain.
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A function f(x;) : 2 — R is convex on the convex domain Q2 C R”
<~ Vx1,x € Q, X1 75 X2

fx+ (1= X)x) < Af(x1) + (1= AN)f(xe) VAe(0,1). (3)
The function f(x;) is strictly convex if strict inequality holds.

For n =1, a convex function is below the line joining x; and x».

X2 Z1 T2
T1 X

A strictly convex (left), a convex (middle), and a nonconvex (right) function
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Descent methods
The basic idea for convex problems is to start from a given point
and to go down until the minimum.

Because the problem is convex, one arrives always to the minimum.

The descent methods make use of the derivatives of f(x;) = it can
be used only with fonctions at least Cl so it cannot be used for
discrete problems.
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There are different descent methods; the basic one is the steepest
descent method.

It is composed of different steps:

choice of a feasible starting point x? € Q;

for each step k, computation of the steepest descent direction
d,-k;

for each step k, computation of the step length tX;
calculation of the new point xikJr1 = x,~k + tkdik.

stop when d,.k = OVi.

By the same properties of the gradient, d; = —V;f.

The step length can be calculated by different methods:
dichotomy, quadratic interpolation, golden section etc.
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It can be shown that d* - d¥*1 = 0 — the method is not very
effective.

Other descent methods improve the descent track: quasi-Newton,
conjugate gradient etc.

Using descent methods with non-convex functions can lead to local
minima: the starting point Q2 leads to the local minimum P2,
while Q4 leads to the global minimum P4.
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When constraints are imposed, the minimum can be on the

boundary and it can corresponds to points where the gradient is
not null.

Different methods can be used to take into account for constraints:
barrier, penalization etc.
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Metaheuristics

The true drawback of descent methods is the sensitivity to the
initial point

If the problem is non-convex, the convergence to a true global
minimum is not guaranteed.

To counter this problem, the basic idea is to work not with a
unique point, but with a population of individuals.

An individual is a vector x;, i =1, ..., n candidate to be a solution
of the problem.

Letting evolve a population of potential solutions help in reaching
the global minimum.

The dynamics that inspires the displacement of the population
throughout the feasible domain is called a metaheuristic.
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A metaheuristic is hence a rationale inspired by a given
phenomenon that can be biological, social or physical.

There are, in fact, several different metaheuristics:

simulated annealing, inspired by metallurgy of alloys;

ant colonies, inspired by the social dynamics of ants;

neural networks, inspired by the brain functioning;

tabu search, inspired by social rules;

genetic algorithms, inspired by Darwinian selection;

particle swarm optimization (PSO), inspired by the dynamics
of flocks of birds or shoals of fishes.

Metaheuristics are order zero methods: they do not need the
calculation of the derivatives of the objective function.

As such, they can be used also with discrete problems.
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Genetic algorithms

Genetic Algorithms (GAs) are perhaps the most used metaheuristic.

GAs were introduced by Holland in 1965 and are inspired to the
mechanism of natural selection (C. Darwin, The origin of species,
1859).

The basic idea is that of letting evolve a population following the
rules of the survival of the fittest (Darwinian selection).

The dynamics of the changes of the population from a generation,
i.e; an iteration of the algorithm, to the following one are based

upon the laws of genetics.

The success of GAs is mainly due to their robustness and
effectiveness in dealing with non convex problems.
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The general scheme of a classical GA is rather simple:

INITIAL
POPULATION
Random extraction of
Nindividuals

BEST
INDIVIDUAL
Final population’s
average adaptation

Figure:

[ m------
| REPRODUCTION
1
1
1
1 + . I.
ADAPTATI.ON ‘ SELECTION \ (,ROSS—‘O\ ER
Fitness evaluation of . > Mixing of parents
. Making parents couples [ 1
the individuals 1 genotype
1
1
1
1
1
1
1
1
NEW L] ot ot
. Stochastic alteration of
GENERATION : individual’s genotype
1
e - =

General scheme of a classical GA
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The adaptation of each individual is an operation aiming at giving
a ranking of individuals with respect to the objective: better
individuals, i.e. individuals for which the objective has a better
value, have a better fitness .

There are different ways to introduce a fitness, normally ¢ € [0, 1]:
0 corresponds to the worst individual, 1 to the fittest one.

A classical way is to define the fitness as

f—mingop, f <
4,0:<1+ MiNpop f) , c>1. (4)

MiNpop f — Maxpop

Coefficient ¢ is used to tune the selection pressure.

Defined in this way, 0 < ¢ < 1.

16
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The Darwinian idea is that individuals with a better fitness, i.e.
best adapted to environment, have a greater chance to survive a
longer time, so to reproduce themselves.

Hence, in the selection phase best fitted individuals have a greater
chance to be selected.

There are different ways to operate selection; in all the cases, a
couple of individuals, the parents, is selected to be reproduced in
the subsequent phases.

Two widely used selection strategies are tournament and roulette
wheel.
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In the tournament selection, k individuals are randomly chosen and
only the best one is selected; doing this N times, one gets N
parents; these are then coupled randomly to generate N offsprings.

In roulette wheel selection, N/2 couples are randomly selected on
the base of their fitness: the higher the fitness ; of individual i,
the higher its probability p; to be selected for reproduction:

Pi
bi= =N (5)
Zj:l Pj
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Coding individuals: phenotypes and genotypes

In a classical GA, each real or discrete variable, the phenotype, is
coded binary to obtain its genotype.

It is hence represented by a chain of Os and 1s: the DNA chain of
an individual.

The genetic operations are done on the binary chains of two
individuals, the parents, to obtain (hopefully) two better offsprings.

There are two classical genetic operations: crossover and mutation.

both of them are used to generate offsprings from selected parents;
because of selection, there is a genetic improvement of the
population, i.e., the objective function is globally improved.

In this way, from a generation to the following one, more and more
fitted individuals form the populations — the probability to have
better individuals, i.e. phenotypes approaching the minimum,

increases.
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Genetic operations

Classical binary operations are done on the genotypes, i.e. ont he
binary strings. Cross-over on genes (1 gene=1 design variable)

100011j0111001001 1880[1)§0111001001
[111001/0101100010 (1880101100010
point de cross-over _—
2 parents 2 enfants

Cross-over allows to obtain 2 offsprings from two selected parents.

The crossover point is randomly selected

20/53



Gene mutation:

[1110[]10101100010| 11104§10101100010
position de la mutation . \ .
géne originaire géne muté

Mutation is introduced to guarantee a certain biodiversity, which
mathematically speaking serves to better explore the feasible
domain and avoid local minima (premature convergence).

The binary digit to be mutated is randomly selected.

A third operator is often used: elitism. It consists in preserving the
best individual of each generation, that replaces the worst one of
the offsprings.
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An exemple of non convex function

Problem: to solve the equation y = cos2x in [0,27]. Th problem

can be seen as: find the minimum of y2.

Evoluion fiiness moyenne

—= ——
y=cos 2x dans [0, 27]
08
Evolufion finess du meflleure
06 k
095
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-044 \ y i y 08
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The GA BIANCA

BIANCA (Biologically Inspired ANalysis of Composite
Assemblages) is a GA with some special characteristics, specially
conceived for highly non convex constrained modular problems

Its main features are

multi-chromosome and multi-gene

multi-population with migration operator

virtual binary coding

Boolean genetic operations over each gene

elitism

constraints handled by ADP (Automatic Dynamic
Penalization) method

it makes evolve simultaneously species and individuals, thanks
to special crossing and mutation operators

it can be interfaced, in principle, with any other code (namely
ABAQUS, ANSYS, MATLAB etc.)
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BIANCA has a special structure of the information that allows for
a deep mixing of genomes and for the simultaneous selection of
species and individuals:

some 2

Individual 14 -

Chromosome 7rom Population i
(ning ndividuals)

n layers 0 gene of
the
material

o -

gene of the
orientation

Remarque: stratifiés avec n
différent appartiennent a
différentes especes

chromosome &
e By

6 genes of
components

genome with #» chromosomes

- =

0
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Special genetic operators are introduced in BIANCA for the
selection of the species.

Different species are characterized by a different number of
chromosomes.

This is done to deal with new problems like those concerning
modular systems.

) Shit operator

(3) Mutation of the number of chromosomes (b) Random mutation of each gene
‘and adition/deletion operator

@ [ e ) @ [ e
s @' [ @ [

) Cridren,

[ o
o | o @ | #0 . .
. | . e .
e w60 - o [007]
Figre 18 Crossover among specics: (a) parents conple (b) effect of the shift operator, Figure 1.9: Mutation of species: (a) mutation of the number of chromosones and effect of
(¢) crossover on homologous genes, (d) children couple and (e) effect of the the operator, (b) effect of the mutation operator on every

reorder operator gene
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An exemple of non convex constrained function

Problem: find the minimum of
f(x1,x) = ENCIVE S sin axy cos 2bxo, (6)
in the domain
Q={(x1,x): 0<x3 <4m, 0<x <27}, (7)
with the constraint
g(x1,x) = et — x»—1<0, (8)

with a=1., b=0.6, c = 0.012, k = 0.2.
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The function is non convex, different local minima exist in Q but
the absolute admissible minimum is on the boundary.
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The

GA BIANCA has been used with the following parameters:

4 populations, each one of 200 individuals

400 generations

probability of cross-over: 0.8

probability of mutation: 0.04

isolation time: 20 generations

elitism

selection type: roulette wheel
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Best solution: p =(10.711,2.966), f = —8.099.

Convergence diagrams

Evol ution of the best Evol ution of the average
6.5
2 7.0 ®
g g
3 B
5 ' =z
° _7.5H ‘L\W ° ~
b ALl ~ N }\ M ~
*Sﬂoi E=l L% »JMM Lo n\h‘y\mmdﬂs ! MAJ(AM
0 100 200 300 400 100 200 300 400
generation generation
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Dynamics of the populations
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The PSO code ALE-PSO

The code ALE-PSO is a Particle Swarm Optimization code is a
classical PSO code (Eberhart and Kennedy, 1995), but with
adapting coefficients, that evolve through a prescribed scheme,
specified by the operator

PSO are inspired by and they mimic in an algebraic way. the social
behavior and dynamics of groups of individuals (particles), such as
the flocks of birds, whose groups displacements are not imposed by
a leader: the same overall behavior of the flock guides itself.

Their main advantage is their true simplicity: the updating rule is

“It(+1 = foCoUlt( + r1C1(Pl§ - Xf) + no(pf — Xlt()

k k k
Xip1 =Xy U g, k=1,...m t=1 .5

(9)
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e X{,: vector representing the position, in the n-dimensional
problem space, of the k-th particle in a swarm of m particles,
at the time-step t + 1 of s total steps;

e u¥, ,: displacement (often called velocity) of the particle x
from its position x’t‘ at the time step t to its updated position
x’t‘_H at the time-step t + 1;

e pX : vector recording the best position occupied so far by the
k-th particle (personal best position); in a minimization
problem for the objective function f(x), p¥ is updated as

follows: . B .
K {pt if f(x¢y1) > f(pt)

Pir1 = ) (10)
xg, if F(xg1) < F(pF)
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e p? : vector recording the best position occupied so far by any
particle in the swarm (global best position); in a minimization
problem for the objective function f(x), p is updated as
follows:

pi,, € {pf 1,k =1,...,m} such that
f(Pil) = kf?in f(PI;-s-l)

[RRS}

(11)

® 1y, n, ry: independent random coefficient uniformly distributed
in [0,1]

® (y, C1, Co: inertial, cognition and social parameters

In ALE-PSO ¢y, ¢1, ¢ are updated during iterations using a power
law
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An exemple of unconstrained function

Problem: find the minimum of

2 2 2
y:X]_ +X2 +X3.

(12)

We have used AE-PSO with a swarm of 200 particles and with 50
iterations.

The best solution is found after 25 iterations.

obj ective

Evol ution of the average

Evol ution of the best of ever

100 —\‘ 3.0F
\
ol | 2.5F
|
| ® 2.0
o | z
‘\ 3 1.5
a0l \ g
\ 1.0f
20 \
\ 0.5F
ot I 0.0b ey
0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration
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The dynamics of the swarm:
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An exemple of constrained function

We solve with ALE-PSO the same problem previously solved with
BIANCA, eq. (6).

The constraint is handled through a death-penalty method.
We have used a swarm of 100 particles for 100 iterations.

The best solution is p = (10.699, 2.954), with f = —8.096 found
after 10 iterations.

Evol ution of the average Evol ution of the best of ever

-7.2F
_7.4F

—7v6"

obj ecti ve
obj ect i ve

7.8"

8.0 |

.
M WSOV N

0 20 40 60 80 100 0 20 40 60 80 100

iteration iteration
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The dynamics of the swarm:
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Optimisation of anisotropic laminates

e Typical problems:
min £ (x) (13)

X
x: design variables (typically: n, d;, thicknesses etc.)
usually, the material is chosen a priori — the isotropic
part is completely determined by this choice
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Optimisation of anisotropic laminates

e Typical problems:
min f(x) (13)

X
x: design variables (typically: n, d;, thicknesses etc.)
usually, the material is chosen a priori — the isotropic
part is completely determined by this choice
e Be:

P = {P,’, i=1,..., 12} = {Ro, Rl,Qo — ¢13¢1}A,B,D (14)

To and T; do not appear because we consider here only
laminates with identical plies
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Optimisation of anisotropic laminates

e Typical problems:
min £ (x) (13)

X
x: design variables (typically: n, d;, thicknesses etc.)
usually, the material is chosen a priori — the isotropic
part is completely determined by this choice
e Be:

P = {P,’, I = 1, ceny 12} = {Ro, Rl,Qo — @L@l}A,B,D (14)
To and T; do not appear because we consider here only
laminates with identical plies

e Key points:
A=A(P), B=B(P;), D=D(P;), i=1,..,12,
unique correspondence
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Optimisation of anisotropic laminates

e Typical problems:
min £ (x) (13)

X
x: design variables (typically: n, d;, thicknesses etc.)
usually, the material is chosen a priori — the isotropic
part is completely determined by this choice
e Be:

P = {P,’, I = 1, ceny 12} = {Ro, Rl,Qo — @L@l}A,B,D (14)
To and T; do not appear because we consider here only
laminates with identical plies

e Key points:
A=A(P), B=B(P;), D=D(P;), i=1,..,12,
unique correspondence
functions

Pi="Pi(s), i=1,.,12, j=1,...,n  (15)

are not bijective
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An optimisation naturally sequential

e Step 1: the structure problem
look for P; = PP € R c R'?: (16)

F(PP") = min, £(P) (17)
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An optimisation naturally sequential

e Step 1: the structure problem

look for P;ZPfPtERCRH:

opty __ . .
f(P; )_%%f(P,)

e Step 2: the constitutive law problem
find 5f°/ eACR":
62"y = min (3;), with
©(57*) gjnelgw( i), wi
12

o(0) = > (Pils) — PP*)?

k=1

(16)

(17)

(18)

(19)

(20)
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Some remarks on the structure problem:

e it has a mathematical structure that is problem dependent:
the type of the objective functional depends upon the problem

e some constraints are normally part of it, specifying some
requirements of different type: technical, mathematical,
mechanical etc.

e the geometrical bounds are constraints that are always to be
added to it; this is needed to have optimal properties that can
be really obtained by a laminate

e because the geometrical bounds are convex but non linear, it
is never linear but it can be convex

e its dimension is problem dependent; anyway, in the case of
design of orthotropic and constant A or DD, its dimension is
reduced to only 3 design variables if the polar formalism is
used
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Some remarks on the constitutive law problem:

e it is always highly non convex, due to the dependence of the
elastic tensors upon the orientations (fourth powers of circular
functions of the orientations)

e its dimension is equal to n —1

e it can be a continuous or a discrete one

e some constraints can be added to it

While the numerical approach for solving the structure problem is
not unique and special procedures can exist for different problems,
the best way for solving the constitutive law problem is always a
metaheuristic: genetic algorithms (GAs), particle swarm
optimization (PSO), ant colonies, (AC), simulated annealing (SA)
and so on
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The constitutive law problem

The objective is to have a general approach for designing laminates
with some given properties in a completely general way, i.e.
without simplifying assumptions

In fact, only in this way it is possible to obtain a true optimal
solution

The idea is to formulate the problem as a problem of minimal
distance of tensors: the optimal laminate is the one whose tensors
have a distance equal to zero from the target tensors

The target tensors have been determined previously, in some way

Typically, for simple problems, they can be found easily, while
generally speaking they are determined as a solution of the
structure problem

Among the properties to be designed, there are the elastic
symmetries, typically orthotropy etc, uncoupling,

quasi-homogeneity, thermal properties etc.
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As we have already seen, when only the elastic properties are to be
optimized, then the problem can be put in the form

find 6° € ACR": (21)
soly __ . . :
#(07") = min ¢(9;),  with (22)
12 )
w(6)) =Y (Pid)) — P7) (23)
k=1

The set A of admissible orientations J; depends upon the problem
at hand and it can be continuous, regularly or irregularly discrete

The design variables are the orientations d;,j = 2,...n; 1 =0 to
fix the frame

The problem is highly non convex and the solution never unique

This is important, because it allows to put some constraints on the
second and not on the first step

42 /53



Examples of design of the constitutive law

Example 1: 10-ply T300/5208 carbon-epoxy laminate with:

e B=0=R{=RE=0

e R\ =RP =0

e discrete angles (each 1°).
The best solution found by ALE-PSO (swarm of 100 particles for
100 iterations) is
[31°/ —22°/90°/ — 24°/19°/ — 55°/90°/ — 37°/44° /0°]
Residual: 0.11 x 1074,

Evol ution of the average Evol ution of the best of ever
T T T

A
/\
0.157 0.030f
\
\
\ 0. 02501
o ° |
> 0.10 > 0.020 H
g \ 3
o \ 2 0.015F|
) \ o)
\ 8
0.05 0.010
\,
V\/\/\N\/»\/\ﬂ 0008
WSAAN e \
. . f : — 0. 000 —
0 20 40 60 80 100 0 20 40 60 80
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The dynamics of the swarm:

50

var_3
0
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The directional diagrams of the Cartesian components
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Example 2: a 12-ply carbon-epoxy fully isotropic uncoupled
laminate.

eB=0=R§=RF=0

° Rg‘:ROD:RlAleDzo
The best solution found by ALE-PSO (swarm of 200 particles for
200 iterations) is
[-67.3°/54.3°/0.8°/ — 18.7°/43.7°/90°/ — 24.3°/
—69.6°/32.2°/ — 69.1°/55.5°/ — 10.4°]

Residual: 0.57 x 1073,

Evol ution of the average Evol ution of the best of ever

' T T 0.030f
0.25f ] |
|
| 0.025}/
0.20f| 1 |
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The directional diagrams of the Cartesian components
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Example 3: 12-ply T300/5208 carbon-epoxy laminate with:
e A ordinarily orthotropic = @é — @’14 = KA%
eB=0=>RE=RE=0

§; € {0°,15°,30°,45°,60°, 75°,90°, ....}

o EM_ >100 GPa (= 0.55 £;)
e £’ > 40 GPa (= 3.88 E)

Best solution found by GA BIANCA:
[0°/30°/15°/15°/90° /75°/0° /45° /75° /0° /15° /15°]
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Example 4: 12-ply T300/5208 carbon-epoxy laminate with:
e A isotropic = R§' = R{* =0
D ordinarily orthotropic with K? = 0 = @5 = &P
B=0=RE=RE=0
d;j € {—90°,90°}
isotropic tensor of thermal expansion coefficients
cylindrical bending under a thermal gradient
Best solution found by GA BIANCA:
[0°/ —29.9°/44.3°/ — 61.8°/89.3°/61.8°/31.5°/ — 89.1°/33.4°/ —
71.7°/ —11.6°/ — 28.1°]

6.0E:06
6 =0,
100000 |
4.0B:06 [ -~ 1-- -~
F Soo00 F 20606 [ ----—- N -7y -
[ [
8 Y
3
5 0 2 00E+00
3 S
£ ] ‘
5 & soeosl- [0 LR
50000 5 20806 : ;
4.0E-06 [-- -\~ -~~~ AT
-100000
~150000 -100000 -50000 O 50000 100000 150000 )
Direction 0° (GPa) som0s P :
-4.0E-06 -2.0E-06 0.0E+00 2.0E-06 4.0E-06
(a) (b) Direction 0° (GPa)
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Example 5: 12-ply T300/5208 carbon-epoxy rectangular simply
supported laminate with:
eB=0=RF=RF=0
e D ordinarily orthotropic = ®§ — &P = KD%
e Orthotropy axes aligned with the plate’s sides = dilD =0

e Frequency of the first mode w; > 150 Hz

100 y
DXX*
The best solution found by the ®
code ALE-PSO is
[~66.1°/66.5° /44.8°/ — 36.4°/ ° ¥

48.5°/ —5.7°/77.6°/ — 90°/
—84.5°/38.5°/57.5°/ — 46°/] o

100

100 50 0 50 100
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A complete problem: structure plus laminate problem

This is an example of a complete case: the structure problem
followed by the research of a suitable laminate

Problem: maximize the bending of a laminate produced by PZT
actuators.

Requirements:

e cylindrical bending coclecric lavr
eB=0=RE=RF=0
e D ordinarily orthotropic

=
¢D _ gD — kDT
0 4

° 6J- discretized at 5°

x
Tz [

K| < -] <] =H

Composite
layer

meven

Application to a T300/5208 carbon-epoxy 16-ply laminate
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The structure problem: it can be formulated as follows (D = D~1):

max f(d;) = D12 + Do
j

with (24)
g(9j)) =D1o+ D11 =0
The solution of the structure problem in this case can be found by

hand and gives to the constitutive law problem the optimal values
D D
RO opt and Rl opt

The constitutive law:

e RP = RP
0 0 opt .
min ©(6)) :(ROD — Ré)opt)2 + (RP - RlDopt)2+

D _ pD
b Rl _Rl opt % ) ) -
e RE=0 - R$™ +RP +(¢5—¢{’—KDZ)2
e RE=0 (25)

op-aP = kP



Best solution found by code ALE-PSO:

[—20°/5°/0° /15°/15° /5° /40° /45° /90° /
—10°/20°/ — 15°/10°/5°/20° / — 15°]

hadl
Dy’ i
/ g,
o
By
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, D U, SO
150 100 50 o 50 100 150 2p0
20
404
' GPa
o0
1.00E+01 1.00E-
F F 100 200 300 w00 t s
1.00E+00 | 1.00E-01
\ 100 200 300 400 5C
\
100801 | Convergence of 100E0Y Convergence of
1.00E-02 the average 1.00E-03 the best particle
1.00E-03 %)WMM A ﬁ 1.00E-04
1.00E-04 1.00E-05
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