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Topics of the fourth lesson

• The Polar Formalism - Part 1
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Why the polar formalism?

In 1979 G. Verchery presented a memory about the invariants of
an elasticity-type tensor. This short paper marks the birth of the
polar formalism or method.

We have seen that for anisotropic materials the Cartesian
components of a tensor describing a given property all depend upon
the direction; moreover, this dependence is rather cumbersome.

Hence, when the Cartesian components are used for representing
an anisotropic tensor, none of these components are an intrinsic
quantity: all of them are frame-dependent parameters.

Here intrinsic is only a synonymous of invariant but it has also a
more physical signification: it indicates a quantity that
characterizes intrinsically a physical property, that belongs, in some
sense, to it.

In addition, if a priviledged direction linked to the anisotropic
property exist, it does not appear explicitly.
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On its side, the polar formalism is an algebraic technique to
represent a plane tensor using only tensor invariants and angles
(that is why the method is polar).

Hence, the intrinsic quantities describing a given anisotropic
property and the direction directly and explicitly appear in the
equations.

It is exactly the use of invariants and angles that makes the polar
method interesting for analyzing anisotropic phenomena:

• the invariants are not linked to the particular choice of the
axes, so they give an intrinsic representation of elasticity

• the explicit use of angles makes appear directly one of the
fundamental aspects of anisotropy: the direction. This is
possible because, unlike other tensor representations, the polar
method does not use exclusively polynomial invariants
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• the invariants used in the polar formalism are linked to the
elastic symmetries, i.e. they represent in an invariant way the
symmetries

• the polar method allows for obtaining much simpler formulae
for the rotation of the axes than the Cartesian ones

• the method is based upon the use of a special complex
variable transformation, that is why it can be used only for
representing plane tensors

• for its characteristics, the polar formalism is well suited for
design problems and for theoretical analyses. The possibility
of working directly with tensor invariants gives in fact some
mathematical advantages in certain transformations.
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An algebraic approach to elastic symmetries?

Because the polar invariants represent intrinsically the symmetries,
the polar formalism opens the way to a new approach to the
analysis of the material symmetries. While in a traditional
approach the analysis of the symmetries is essentially geometric, in
the polar formalism it is strictly algebraic.

In fact, with the traditional approach, one analyses the effects that
a geometric symmetry of the material behavior has on the
Cartesian tensor components. Typically, some of them vanishes in
a particular frame, the symmetry frame, i.e. the frame whose axes
coincide with the equivalent directions of the given material
symmetry.

So, this approach gives a typical structure of the tensor but
exclusively in the symmetry frame: the algebraic effects of this
analysis are apparent only in this special frame, and vanishes in a
general frame, at least apparently.
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In the polar formalism, the approach is quite the opposite one: a
material symmetry is intrinsically detected by a special value taken
by one or more polar invariants, and this, of course, regardless of
the frame in which the Cartesian components are written.

The point of view is hence clearly algebraic: the symmetry is seen
as an algebraic property, and more important than its geometric
description, is the effect that the invariants have on the Cartesian
components and the property they represent when these invariants
get the values corresponding to a symmetry.

This approach focuses hence on the algebraic effects of the
symmetry and as such it is more powerful than the merely
geometric one; it has allowed to discover some planar elastic
symmetries unknown in the past and, studying the anisotropy of
complex materials, the links that exist between the tensorial
symmetries and the elastic symmetries, etc.
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With the polar formalism, the classification of the elastic
symmetries is strictly based upon the algebraic properties of the
tensor polar invariants, not upon the geometric symmetries: then
mechanical aspects assume a greater importance than the
geometric ones.

This point of view lets appear a fundamental fact: to the same
material symmetry, classified according to a merely geometric
criterion, can belong different algebraic symmetries which have
different mechanical properties.

The polar formalism apply directly to tensor components; this is
why we prefer to develop the entire theory continuing to use them
in place of switching immediately to the Kelvin’s notation.
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The transformation of Verchery

The polar formalism, as already said, is an algebraic technique
based upon the use of a complex variable change.

However, unlike what done in other approaches, namely in the
works of Mushkelishvili, Green & Zerna or Milne-Thomson,
Verchery introduces a different transformation.

The reason is that, as we will see, this transformation allows for
obtaining particularly simple matrices, namely diagonal matrices
for the rotations and anti-diagonal matrices for mirror symmetries.

In short, the transformation of Verchery has better algebraic
properties than the one usually introduced in the literature.

Just like Green & Zerna, Verchery introduces a complex variable
change, interpreted as a change of frame:
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let us consider a vector x = (x1, x2), and the transformation

X1 =
1√
2
kz , X2 = X

1
, k = e i

π
4 , (1)

giving the contravariant components of Xcont = (X 1,X 2), the
transformed of x (the transformation is not orthogonal).

Equation (1) is the transformation of Verchery; z is the complex
variable

z = x1 + ix2. (2)

The transformation (1) can be applied not only to rank-1 tensors,
the vectors, but also to tensors of any rank.

To this purpose, it is worth to write eq. (1) in a matrix form:
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Xcont = m1x, → m1 =
1√
2

[
k k

k k

]
=

1

2

[
1− i 1 + i

1 + i 1− i

]
.

(3)
The covariant components can be easily obtained using the metric
tensor g:

Xcov = gcov Xcont , (4)

whose components can be found expressing the length ds of an
infinitesimal arc:

ds2 = dx2
1 + dx2

2 = dzdz = 2 dX1dX2,

ds2 = dXcont · gcovdXcont = gijdXidXj ,
→ gcov =

[
0 1

1 0

]
.

(5)
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Hence
m−1

1 = gcov m1 (6)

and, considering eq. (1),

Xcov = (X1,X2) = (X2,X1) = (X
1
,X

2
) →

Xcov = X
cont

= m−1
1 x.

(7)

This fact is typical of the transformation of Verchery: all the
covariant components are equal to the contravariant components
that are obtained swapping indexes 1 and 2, or, equivalently, they
are the complex conjugate of the corresponding contravariant
components, and vice-versa.

A further result for this transformation is that

ds2 = dXcov · gcontdXcov = g ijdXidXj →
gcont = g−1

cov = gcov := g.
(8)
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Matrix m1 operates the transformation of rank-1 tensors, and it has
some remarkable algebraic properties, that can be readily found.

It is important to notice that these properties are shared by all the
matrices mj that operates the transformation for rank-j tensors.

Such properties, easy to be checked for m1, are:

m>j = mj ,

m>j 6= mj ,

m−1
j = m>j = mj ,

∀j ≥ 1. (9)

Hence, matrices mj are unitary, but not Hermitian because of eq.
(9)2, symmetric with respect to both the diagonals and the inverse
coincides with the complex conjugate1.

1To make a comparison, the transformation normally used, cf. Green &
Zerna, is defined by the equations X 1 = z , X 2 = z . Following the same
procedure used here for the Verchery’s transformation, it is easy to check that
in this case all the listed properties are no more valid.
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Second-rank tensors

The matrix m2 for the transformation of rank-2 tensors can be
computed in the following way:

m2 =

[
m11

1 m1 m12
1 m1

m21
1 m1 m22

1 m1

]
=

1

2


−i 1 1 i

1 −i i 1

1 i −i 1

i 1 1 −i

 . (10)

It is not too hard to check that m2 has the properties (9).

Let us represent a second-rank tensor L as a column vector where
the order in which the components of a tensor appear in the
column is not arbitrary, but obeys to the following rule: the first
component is that whose indexes are all 1 and the successive
components increase the indexes starting from the right: 1111,
1112, 1121, 1122, 1211, 1212, 1221, 1222 and so on.
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Then

Lcont = m2L→


L11

L12

L21

L22

 =
1

2


−i 1 1 i

1 −i i 1

1 i −i 1

i 1 1 −i




L11

L12

L21

L22

 . (11)

As already happened for Xcont , we can notice that only two
complex components of Lcont are sufficient to define L, because

L21 = L
12
, L22 = L

11
. (12)

This is a consequence of the Verchery’s transformation, valid for
tensors of any rank. In addition, it is also

tr L = L12 + L21 (13)

and, once put
G = g � g, (14)

we get also
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Lcov = gLcontg> = GLcont , → Lij = gimgjnLmn →

Lcov =

[
L22 L21

L12 L11

]
,

(15)

confirming what said above about the relation between covariant
and contravariant components.

Remembering eqs. (9)3 and (12), we then have also

Lcov = L
cont

=

[
L

11
L

12

L
21

L
22

]
→ Lcov = m−1

2 L. (16)

In the case, interesting for us, of a symmetric second-rank tensor,
eliminating the component 21, eq. (11) becomes

L11

L12

L22

 =
1

2

 −i 2 i

1 0 1

i 2 −i




L11

L12

L22

 . (17)
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Fourth-rank tensors

The transformation matrix m4 is computed as

m4 =


m11

2 m2 m12
2 m2 m13

2 m2 m14
2 m2

m21
2 m2 m22

2 m2 m23
2 m2 m24

2 m2

m31
2 m2 m32

2 m2 m33
2 m2 m34

2 m2

m41
2 m2 m42

2 m2 m43
2 m2 m44

2 m2

 . (18)

The contravariant components of T can be computed as usual:

Tcont = m4T, (19)

and writing T in the form of a column vector we get, after some
rather lengthy computations,
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

T1111

T1112

T1121

T1122

T1211

T1212

T1221

T1222

T2111

T2112

T2121

T2122

T2211

T2212

T2221

T2222



=
1

4



−1 −i −i 1 −i 1 1 i −i 1 1 i 1 i i −1

−i −1 1 −i 1 −i i 1 1 −i i 1 i 1 −1 i

−i 1 −1 −i 1 i −i 1 1 i −i 1 i −1 1 i

1 −i −i −1 i 1 1 −i i 1 1 −i −1 i i 1

−i 1 1 i −1 −i −i 1 1 i i −1 −i 1 1 i

1 −i i 1 −i −1 1 −i i 1 −1 i 1 −i i 1

1 i −i 1 −i 1 −1 −i i −1 1 i 1 i −i 1

i 1 1 −i 1 −i −i −1 −1 i i 1 i 1 1 −i

−i 1 1 i 1 i i −1 −1 −i i 1 −i 1 1 i

1 −i i 1 i 1 −1 i −i −1 1 −i 1 −i i 1

1 i −i 1 i −1 1 i −i 1 −1 −i 1 i −i 1

i 1 1 −i −1 i i 1 1 −i −i −1 i 1 1 −i

1 i i −1 −i 1 1 i −i 1 1 i −1 −i −i 1

i 1 −1 i 1 −i i 1 1 −i i 1 −i −1 1 −i

i −1 1 i 1 i −i 1 1 i −i 1 −i 1 −1 −i

−1 i i 1 i 1 1 −i i 1 1 −i 1 −i −i −1





T1111

T1112

T1121

T1122

T1211

T1212

T1221

T1222

T2111

T2112

T2121

T2122

T2211

T2212

T2221

T2222



.

(20)
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To check that m4 has the properties (9) is still rather
straightforward, despite the size, 16× 16, of the matrix.

Once more, only eight complex components Tijkl are needed,
because

T2111 = T
1222

,T2112 = T
1221

,T2121 = T
1212

,T2122 = T
1211

,

T2211 = T
1122

,T2212 = T
1121

,T2221 = T
1112

,T2222 = T
1111

.
(21)

Also for the covariant components of T we get

Tcov = GTcontG> → Tijkl = gimgjngkpglqTmnpq,

Tcov = T
cont

, Tcov = m−1
4 T →

T1111 = T2222 = T
1111

, T1112 = T2221 = T
1112

,

T1121 = T2212 = T
1121

, etc.

(22)
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Elasticity tensors
We consider now elasticity tensors, i.e. having the minor and major
symmetries. For plane tensors, these symmetries give the following
ten conditions

T1112 = T1121 = T1211 = T2111, T1122 = T2211,

T1212 = T2112 = T2121 = T1221, T1222 = T2122 = T2212 = T2221.
(23)

As a consequence, there are only six independent components for a
plane elastic tensor and finally we have

T1111

T1112

T1122

T1212

T1222

T2222


=

1

4



−1 −4i 2 4 4i −1

−i 2 0 0 2 i

1 0 −2 4 0 1

1 0 2 0 0 1

i 2 0 0 2 −i
−1 4i 2 4 −4i −1





T1111

T1112

T1122

T1212

T1222

T2222


. (24)

Only 4 components of Tcont are needed to know T:
T1111,T1112 ∈ C, T1122 and T1212 ∈ R
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Tensor rotation
We consider a new frame {x ′1, x ′2}, rotated through an angle θ with
respect to the initial frame {x1, x2} and we pose

r = e−iθ, (25)

so that in the new frame the complex variable is

z ′ = r z . (26)

If we apply the Verchery’s transformation (1) we get the new
contravariant components of x:

X1′ =
1√
2
k z ′ =

1√
2
k r z = r X1,

X2′ =
1√
2
k z ′ =

1√
2
k r z = r X2,

(27)

so that we can write

Xcont ′ = R1Xcont →

{
X1′

X2′

}
=

[
r 0

0 r

]{
X1

X2

}
(28)
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The rotation matrix has a characteristic that is common to all the
rotation matrices, at any tensor rank: it is diagonal.

This is a fundamental result of the Verchery’s transformation
because, as we will see below, it is just this property that allows for
easily find tensor invariants.

The direct transformation of the real Cartesian components can be
obtained using eqs. (3) and (28):

x′ = m−1
1 Xcont ′ = m−1

1 R1Xcont = m−1
1 R1m1x. (29)

Developing the calculations, one obtains

x′ = r1x, r1 = m−1
1 R1m1 =

[
c s

−s c

]
; c = cos θ, s = sin θ.

(30)
It can be noticed that r1 is the classical matrix for the rotation of
tensors in R2.
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The rotation matrix R2 for rank-two tensors can be constructed
with the same rule used for m2, eq. (10), for finally obtaining

Lcont ′ = R2Lcont →


L11′

L12′

L21′

L22′

 =


r2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 r2




L11

L12

L21

L22

 .

(31)
For symmetric tensors, the above equation reduces to

L11′

L12′

L22′

 =

 r2 0 0

0 1 0

0 0 r2




L11

L12

L22

 . (32)
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Also in this case, we can find the matrix r2 for the rotation of the
real Cartesian components:

L′ = m−1
2 Lcont ′ = m−1

2 R2Lcont = m−1
2 R2m2L →

L′ = r2L, r2 = m−1
2 R2m2 =


c2 sc sc s2

−sc c2 −s2 sc

−sc −s2 c2 sc

s2 −sc −sc c2

 , (33)

which is the classical rotation matrix for rank-two tensors in the
plane.
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For tensors of the fourth rank, the procedure is exactly the same:

Tcont ′ = R4Tcont , (34)

and after some lengthy calculations we get

T1111′

T1112′

T1121′

T1122′

T1211′

T1212′

T1221′

T1222′

T2111′

T2112′

T2121′

T2122′

T2211′

T2212′

T2221′

T2222′



=



r4

r2

r2

1

r2

1

1

r2

r2

1

1

r2

1

r2

r4

r2





T1111

T1112

T1121

T1122

T1211

T1212

T1221

T1222

T2111

T2112

T2121

T2122

T2211

T2212

T2221

T2222



,

(35)
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

T1111′

T1112′

T1122′

T1212′

T1222′

T2222′


=



r4

r2

1

1

r2

r4





T1111

T1112

T1122

T1212

T1222

T2222


. (36)

Also in this case, for the rotation of the real Cartesian components
we get

T′ = m−1
4 Tcont ′ = m−1

4 R4Tcont = m−1
4 R4m4T →

T′ = r4T, r4 = m−1
4 R4m4.

(37)
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We explicit the matrix r4 only for the case of elasticity-like tensors:

r4 =



c4 4sc3 2s2c2 4s2c2 4s3c s4

sc3 c4 − 3s2c2 s3c − sc3 2(s3c − sc3) 3s2c2 − s4 −s3c

s2c2 2(sc3 − s3c) c4 + s4 −4s2c2 2(s3c − sc3) s2c2

s2c2 2(sc3 − s3c) −2s2c2 (c2 − s2)2 2(s3c − sc3) s2c2

s3c 3s2c2 − s4 sc3 − s3c 2(sc3 − s3c) c4 − 3s2c2 −sc3

s4 4s3c 2s2c2 4s2c2 4sc3 c4


,

(38)
which is the classical rotation matrix for elasticity tensors in the
plane.
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Tensor invariants under frame rotations

To look for tensor invariants under frame rotations is particularly
simple thanks to the fact that all the rotation tensors Rj for the
contravariant complex components are diagonal, which is far to be
the case for the rotation tensors rj of the real Cartesian
components.

This fact is the major algebraic effect of the Verchery’s
transformation, and motivates the method and the passage to
contravariant complex components.

For better understanding the procedure, let us start with the
simpler case, that of vectors; looking at eq. (28), one can see
immediately that the only invariant quantity, i.e. the only quantity
that can be formed using the contravariant components and whose
transformation to another frame does not depend upon r , is X1X2.
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In fact,
X1′X2′ = rX1 rX2 = X1X2. (39)

A vector has hence only a quadratic tensor invariant; using eq. (1),
we get

X1X2 =
1√
2
kz

1√
2
kz =

x2
1 + x2

2

2
, (40)

which is half the square of the norm of x, the only invariant
quantity in a vector.

The same procedure can be applied to the other tensors. For L,
eq. (31) gives two complex conjugate linear invariants, L12, L21,
and a quadratic one, L11L22:

L12 =
1

2
[L11 + L22 − i (L12 − L21)] ,

L21 = L
12

=
1

2
[L11 + L22 + i (L12 − L21)] ,

L11L22 =
1

4

[
(L11 − L22)2 + (L12 + L21)2

]
,

(41)

and hence the 3 independent real invariants of L are
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l1 = Re
(
L12
)

= Re
(
L21
)

=
1

2
(L11 + L22) =

1

2
tr L,

l2 = Im
(
L12
)

= Im
(
L21
)

=
1

2
(L12 − L21) ,

q1 =
1

4

[
(L11 − L22)2 + (L12 + L21)2

]
,

(42)

which for a symmetric tensor become only two, a linear, l1, and a
quadratic one, q1:

l1 = l2 = L12 = L21 =
1

2
(L11 + L22) =

1

2
tr L,

q1 = L11L22 =
1

4

[
(L11 − L22)2 + 4L2

12

]
.

(43)
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For a fourth-rank tensor T eq. (35) gives 43 invariants on the
whole, of which 6 are linear, 17 quadratics and 20 cubics.

Nevertheless, they cannot be all independent. In fact, there can be
at most 15 independent invariants for T, because it has 16
components.

So, 28 syzygies necessarily exist among the 43 invariants.

A syzygy is a relation between two or more tensor invariants. The
search for syzygies is a crucial point in determining which are the
dependent invariants; unfortunately, no general method exists for
finding the syzygies.

To determine all the independent invariants of a fourth-rank
general tensor in R2 is very long and actually, it is still to be done.

For elastic tensors we have only 6 independent components, which
means that there must be 5 tensor independent invariants for an
elasticity tensor in R2. Scrutiny of eq. (122) is much simpler and
it gives the following six real invariants:
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L1 = T1122,

L2 = T1212,

Q1 = T1111T2222,

Q2 = T1112T1222,

C1 + iC2 = T1111
(
T1222

)2
.

(44)

L1 and L2 are linear, Q1 and Q2 quadratic and C1 and C2 cubic.

The independent invariants are only 5→ one syzygy must exist.

This is readily found observing that

C 2
1 + C 2

2 = (C1 + iC2)(C1 − iC2) = T1111
(
T1222

)2
T

1111
(

T
1222
)2

=

= T1111
(
T1222

)2
T2222

(
T1112

)2
= Q1Q

2
2 .

(45)

In obtaining this result, we have used T2111 = T1112 and eq. (21).
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The Cartesian form of the invariants can be found by eq. (24):

L1 =
1

4
(T1111 − 2T1122 + 4T1212 + T2222) ,

L2 =
1

4
(T1111 + 2T1122 + T2222) ,

Q1 =
1

16
(T1111 − 2T1122 − 4T1212 + T2222)2 + (T1112 − T1222)2

,

Q2 =
1

16
(T1111 − T2222)2 +

1

4
(T1112 + T1222)2

,

C1 =
1

64
(T1111 − 2T1122 − 4T1212 + T2222)

[
(T1111 − T2222)2−

−4 (T1112 + T1222)2
]

+
1

4

(
T 2

1112 − T 2
1222

)
(T1111 − T2222) ,

C2 =
1

16
(T1112 − T1222)

[
(T1111 − T2222)2 − 4 (T1112 + T1222)2

]
−

− 1

16
(T1112 + T1222) (T1111 − T2222) (T1111 − 2T1122 − 4T1212 + T2222) .

(46)

This result shows how it should be difficult to find the tensor
invariants using the Cartesian components.

33 / 120



The polar components

Following the original approach of Verchery, we introduce non
polynomial quantities, the polar components, better suited for
anisotropic problems.

The polar components are in the same number of the independent
Cartesian components, i.e. they are equal to the number of the
invariants plus one: this last parameter introduces the frame
orientation.
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Second-rank symmetric tensors

The polar components of a symmetric second-rank tensor are
introduced posing

L11 = Re2i(Φ−π4 ),

L12 = T .
(47)

T and R are real quantities. They are moduli, in the sense that
they are quantities having the same dimensions of the tensor they
represent (e.g. the dimensions of a stress for tensor σ).

For what concerns T , from eq. (43)1 we have that

T =
1

2
tr L =

L11 + L22

2
. (48)
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Being the modulus of a complex quantity, R ≥ 0. In particular, it is

L11 = Re2i(Φ−π
4

) = L12− i
L11 − L22

2
→ Re2iΦ =

L11 − L22

2
+ iL12

(49)
and

R =

√
L11L

11
=
√

L11L22 → R =

√(
L11 − L22

2

)2

+ L2
12 ≥ 0.

(50)
L11L22 is an invariant, (43)2; as a consequence, both T and R are
invariant quantities. Φ is to be interpreted as an angle; from eq.
(49),

tan 2Φ =
2L12

L11 − L22
. (51)

Because L12 and L11 − L22 are not invariant quantities, Φ is not an
invariant, and it entirely determines the frame orientation.
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Equations (48), (49) and (51) define the 3 polar components, T ,R
and Φ, of L as functions of its Cartesian components Lij .

It is easy to obtain the reverse equations, that give the Lijs as
functions of the polar components:

L11 = T + R cos 2Φ,

L12 = R sin 2Φ,

L22 = T − R cos 2Φ.

(52)

T represents the spherical part of L and R the deviatoric one, in
the sense that

Lsph = T I → ‖Lsph‖ =
√

2T ,

Ldev = L− Lsph → ‖Ldev‖ =
√

2R.
(53)
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Elasticity tensor

2 complex and 2 real contravariant components are sufficient to
describe an elastic tensor.

Then, the polar components of a fourth-rank elasticity-type tensor
are introduced putting:

T1111 = 2R0e
4i(Φ0−π4 ),

T1112 = 2R1e
2i(Φ1−π4 ),

T1122 = 2T0,

T1212 = 2T1.

(54)

T0,T1,R0,R1, Φ0 and Φ1 are the polar components of T.

In particular, T0,T1,R0 and R1 are polar moduli, i.e. they have the
dimensions of a stress, if T is a stiffness tensor, or the dimensions
of the reciprocal of a stress, if T is a compliance tensor.
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Moreover,
R0 ≥ 0, R1 ≥ 0, (55)

because they are proportional to the modulus of a complex
quantity.

Φ0 and Φ1 are to be interpreted as polar angles; we see hence that
the polar formalism gives a representation of elasticity using
exclusively moduli and angles.

In this sense, it is quite different from the classical Cartesian
representation, where only moduli are used, and from the
representation by technical constants, which makes use of moduli
and coefficients.

Using the fact that T2111 = T
1222

etc., along with eq. (44), it is
simple to show that
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L1 = 2T0,

L2 = 2T1,

Q1 = 4R2
0 ,

Q2 = 4R2
1 ,

C1 + iC2 = 8R0R
2
1e

4i(Φ0−Φ1) ⇒
C1 = 8R0R

2
1 cos 4(Φ0 − Φ1),

C2 = 8R0R
2
1 sin 4(Φ0 − Φ1).

(56)

This result shows that T0,T1,R0,R1 and Φ0 − Φ1 are tensor
invariants.

They constitute a complete set of independent invariants for T.

In particular, T0 and T1 are linear invariants, R0 and R1 are
functions of quadratic invariants and Φ0 − Φ1 is a function of a
cubic invariant, that is hence represented by a difference of angles.
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The Cartesian expression of the polar components can be readily
found:

8T0 = T1111 − 2T1122 + 4T1212 + T2222,

8T1 = T1111 + 2T1122 + T2222,

8R0e
4iΦ0 = T1111 − 2T1122 − 4T1212 + T2222 + 4i(T1112 − T1222),

8R1e
2iΦ1 = T1111 − T2222 + 2i (T1112 + T1222) ,

(57)

or, more explicitly,

T0 =
1

8
(T1111 − 2T1122 + 4T1212 + T2222),

T1 =
1

8
(T1111 + 2T1122 + T2222),

R0 =
1

8

√
(T1111 − 2T1122 − 4T1212 + T2222)2 + 16(T1112 − T1222)2,

R1 =
1

8

√
(T1111 − T2222)2 + 4(T1112 + T1222)2,

tan 4Φ0 =
4(T1112 − T1222)

T1111 − 2T1122 − 4T1212 + T2222
,

tan 2Φ1 =
2 (T1112 + T1222)

T1111 − T2222
.

(58)
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It is apparent that the polar angles Φ0 and Φ1 are functions of the
Cartesian components of T and by consequence, frame dependent,
though their difference is an invariant.

Hence, the value of one of them depends upon the other one: only
one of the two polar angles if free, and its choice corresponds to fix
a frame.

The choice usually done is to put

Φ1 = 0, (59)

which corresponds to have the highest value of the component
T1111 in correspondence of the axis of x1.

Inverting eq. (57) we get:
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T1111=T0+2T1+R0 cos 4Φ0+4R1 cos 2Φ1,

T1112=R0 sin 4Φ0+2R1 sin 2Φ1,

T1122=−T0+2T1−R0 cos 4Φ0,

T1212=T0−R0 cos 4Φ0,

T1222=−R0 sin 4Φ0+2R1 sin 2Φ1,

T2222=T0+2T1+R0 cos 4Φ0−4R1 cos 2Φ1.

(60)
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Change of frame

Let us consider now a change of frame from the original one
{x1, x2} to a frame {x ′1, x ′2} rotated counterclockwise through an
angle θ, like in the figure.

x’ θ 

x = 

x 

x 

x’ 
x’ 

1 

1 

2 

2 
3 3 

Then,
L11′ = r2L11 = Re2i(Φ−θ−π4 ), (61)

while L12 does not change because it is an invariant.
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So, following the usual procedure, we obtain

Re2i(Φ−θ) =
L11(θ)− L22(θ)

2
+ iL12(θ), (62)

and for the reverse equations

L11(θ) = T + R cos 2(Φ− θ),

L12(θ) = R sin 2(Φ− θ),

L22(θ) = T − R cos 2(Φ− θ).

(63)

Basically, these are just the equations of the Mohr’s circle.
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For an elasticity tensor, we follow the same procedure and we get

T1111′ = r4T1111 = 2r4R0e
4i(Φ0−θ−π4 ),

T1112′ = r2T1112 = 2r2R1e
2i(Φ1−θ−π4 ),

(64)

that give

8T0 = T1111(θ)− 2T1122(θ) + 4T1212(θ) + T2222(θ),

8T1 = T1111(θ) + 2T1122(θ) + T2222(θ),

8R0e
4i(Φ0−θ) = T1111(θ)− 2T1122(θ)− 4T1212(θ) + T2222(θ)+

+ 4i [T1112(θ)− T1222(θ)] ,

8R1e
2i(Φ1−θ) = T1111(θ)− T2222(θ) + 2i [T1112(θ) + T1222(θ)] ,

(65)
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and for the reverse equations

T1111(θ)=T0+2T1+R0 cos 4 (Φ0−θ) +4R1 cos 2 (Φ1−θ),

T1112(θ)=R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),

T1122(θ)=−T0+2T1−R0 cos 4 (Φ0−θ),

T1212(θ)=T0−R0 cos 4 (Φ0−θ),

T1222(θ)=−R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),

T2222(θ)=T0+2T1+R0 cos 4 (Φ0−θ)−4R1 cos 2 (Φ1−θ).

(66)

Equations (63) and (50), when compared with Cartesian rotation
matrices, show one of the greatest advantages of the polar
formalism: the Cartesian components in the new frame are
obtained simply subtracting the angle θ from the polar angles.

The operation of the change of frame is hence particularly simple
when the Cartesian components are given as functions of the polar
parameters.
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Generalized Mohr’s circles
It is possible to give a graphical construction corresponding to eq.
(50).

This construction is called generalized Mohr’s circles.
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Harmonic interpretation of the polar formalism

Let us consider, e.g., the component T1111(θ)

T1111(θ)=T0+2T1+R0 cos 4 (Φ0−θ) +4R1 cos 2 (Φ1−θ) (67)

• T0 + 2T1 is an invariant term; it represents the mean value of
the components; because it does not change with the
direction, T0 and T1 are the isotropic polar invariants

• the invariants R0 and R1 are the factors of terms which are
circular functions of 4θ and 2θ

• the invariant Φ0 − Φ1 represents the phase angle between the
above terms

• R0,R1 and Φ0 − Φ1 are hence the anisotropic polar invariants

• R0 and R1 represent, to within a factor, the amplitude of the
anisotropic phases, that are directional fluctuations around the
isotropic average
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• The phase decomposition for all the Cartesian components

T1111(θ)= T0+2T1 +R0 cos 4 (Φ0−θ) +4R1 cos 2 (Φ1−θ)

T1112(θ)= R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ)

T1122(θ)= −T0+2T1 −R0 cos 4 (Φ0−θ)

T1212(θ)= T0 −R0 cos 4 (Φ0−θ)

T1222(θ)= −R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ)

T2222(θ)= T0+2T1 +R0 cos 4 (Φ0−θ) −4R1 cos 2 (Φ1−θ)

• The phase R0 is the only one to be present in all the Cartesian
components.
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We have hence a new interpretation of anisotropic elasticity in R2:
the anisotropic elastic behavior can be regarded as a finite sum of
harmonics:

• a constant term, the isotropic phase

• the anisotropic phase, composed by two fluctuating terms:

one varying with 2θ
one varying with 4θ

• the amplitude of all of these phases and the phase offset of
the anisotropic phases are intrinsic properties of the material,
i.e. they are tensor invariants.

The above considerations give the physical meaning of the polar
invariants.

We will see that these last can be linked also to two other physical
facts: the elastic symmetries, determined by some special values of
the polar invariants, and the strain energy decomposition.
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Polar parameters of the inverse tensor
We denote the polar components of S = T−1 by lower-case letters:
t0, t1, r0, r1 and ϕ0 − ϕ1.

These can be found expressing the Cartesian components of S as
functions of those of T, and these last by their polar components,
eq. (50).

Comparing the result so found with eq. (50) written for S, gives
t0, t1, r0, r1, ϕ0 and ϕ1:

t0 =
2

∆

(
T0T1 − R2

1

)
,

t1 =
1

2∆

(
T 2

0 − R2
0

)
,

r0e
4iϕ0 =

2

∆

(
R2

1e
4iΦ1 − T1R0e

4iΦ0
)
,

r1e
2iϕ1 = −R1e

2iΦ1

∆

[
T0 − R0e

4i(Φ0−Φ1)
]
.

(68)
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From the above equations, we obtain also

r0 =
2

∆

√(
R2

1 cos 4Φ1 − T1R0 cos 4Φ0

)2
+
(
R2

1 sin 4Φ1 − T1R0 sin 4Φ0

)2
,

r1 =
R1

∆

{
[T0 cos 2Φ1 − R0 cos (4(Φ0 − Φ1) + 2Φ1)]2 +

[T0 sin 2Φ1 − R0 sin (4(Φ0 − Φ1) + 2Φ1)]2
} 1

2
,

(69)

and

tan 4ϕ0 =
R2

1 sin 4Φ1 − T1R0 sin 4Φ0

R2
1 cos 4Φ1 − T1R0 cos 4Φ0

,

tan 2ϕ1 =
T0 sin 2Φ1 − R0 sin [4(Φ0 − Φ1) + 2Φ1]

T0 cos 2Φ1 − R0 cos [4(Φ0 − Φ1) + 2Φ1]
.

(70)
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∆ is an invariant quantity, defined by

∆ = 8T1

(
T 2

0 − R2
0

)
− 16R2

1 [T0 − R0 cos 4 (Φ0 − Φ1)] =

= det

 T1111 T1122 T1112

T2222 T1222

sym T1212

 . (71)

We will see that ∆ is a positive quantity.

We can switch T and S →

R1 = 0⇔ r1 = 0, R0 = 0 < r0 = 0. (72)

This has a considerable importance in the determination of all the
elastic symmetries
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Technical constants and polar invariants

We can now express the technical constants as functions of the
polar invariants.

First, we write S in terms of the compliance polar invariants:

S1111(θ)=t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ),

S1112(θ)=r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),

S1122(θ)=−t0+2t1−r0 cos 4 (ϕ0−θ),

S1212(θ)=t0−r0 cos 4 (ϕ0−θ),

S1222(θ)=−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),

S2222(θ)=t0+2t1+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ).

(73)
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Now we inject the above expressions for the Sijkl in the definitions
of the technical constants:

• Young’s moduli:

E1(θ) =
1

S1111(θ)
=

1

t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ)
;

E2(θ) =
1

S1111(θ)
=

1

t0+2t1+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ)
;

(74)

• shear modulus:

G12(θ) =
1

4S1212(θ)
=

1

4[t0−r0 cos 4 (ϕ0−θ)]
; (75)

• Poisson’s coefficient:

ν12(θ) = −S1122(θ)

S1111(θ)
=

t0−2t1+r0 cos 4 (ϕ0−θ)

t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ)
;

(76)
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• coefficients of mutual influence of the first type:

η1,12(θ) =
S1112(θ)

2S1212(θ)
=

r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ)

2 [t0−r0 cos 4 (ϕ0−θ)]
,

η2,12(θ) =
S1222(θ)

2S1212(θ)
=
−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ)

2 [t0−r0 cos 4 (ϕ0−θ)]
;

(77)

• coefficients of mutual influence of the second type:

η12,1(θ) = 2
S1112(θ)

S1111(θ)
= 2

r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ)

t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ)
,

η12,2(θ) = 2
S1222(θ)

2S2222(θ)
= 2

−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ)

t0+2t1+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ)
.

(78)
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Using eq. (68) it is also possible to express the technical constants
as functions of the stiffness polar invariants; in the most general
case, this leads to very long expressions, that we omit here.

Nevertheless, it is interesting to consider the case of isotropic
materials; for such a situation, eq. (68) reduce to

t0 =
1

4T0
, t1 =

1

16T1
, r0 = 0, r1 = 0, (79)

so we get

• Young’s modulus:

E =
1

t0 + 2t1
=

8T0T1

T0 + 2T1
; (80)

• shear modulus:

G =
1

4t0
= T0; (81)
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• Poisson’s coefficient:

ν =
t0 − 2t1

t0 + 2t1
=

2T1 − T0

2T1 + T0
. (82)

The remaining coefficients are of course null for isotropic materials.
Another modulus is usually introduced for isotropic materials: the
bulk modulus κ:

∀ σ = pI, κ :=
p

trε
. (83)

Applying this definition to the plane anisotropic case gives

κ =
1

S1111(θ) + 2S1122(θ) + S2222(θ)
=

1

8t1
, (84)

which, for a material at least square symmetric (R1 = r1 = 0),
gives also

κ = 2T1 (85)
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We have hence a physical meaning for the polar invariants of
isotropy:

• t0 and T0 are linked to the shear modulus

• t1 and T1 are related to the bulk modulus

We will see that the existence of these 2 different parts of the
isotropic phase corresponds to the physical fact that for classical
elastic materials the whole of the strain energy can be split, under
some conditions, into two different parts, a spherical and a
deviatoric one, the first linked to volume changes, and ruled by the
bulk modulus, hence by T1, the other by the shear modulus, hence
by T0 (for the isotropic case).

The relations between the Lamé’s constants and the polar
invariants can also be given:

κ = λ+ µ, G = µ ⇒ λ = 2T1 − T0, µ = T0 (86)
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Polar decomposition of the strain energy

Let us consider a layer subjected to some stresses σ, whose polar
components are T ,R and Φ,that produce the strain ε, described
by its polar components t, r and ϕ.

Then the strain energy V is

V =
1

2
σ · ε = T t + R r cos 2(Φ− ϕ). (87)

Using the polar formalism for ε and σ we get easily

Vs :=
1

2
εsph · σsph = T t,

Vd :=
1

2
εdev · σdev = R r cos 2(Φ− ϕ).

(88)

We introduce now the material behavior, using T0,T1,R0,R1 and
Φ0 − Φ1 for representing E):
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V =
1

2
ε · Eε = 4T1t

2 + 8R1 cos 2(Φ1 − ϕ)r t+

+ 2 [T0 + R0 cos 4(Φ0 − ϕ)] r2.
(89)

The variation δV caused by a variation δε of the deformation is

δV = σ·δε = 2T δt+2R cos 2(Φ−ϕ)δr+4R r sin 2(Φ−ϕ)δϕ, (90)

and hence the spherical and deviatoric parts of σ are

T =
1

2

∂V

∂t
,

Re2iΦ =
1

2

(
∂V

∂r
+

i

2r

∂V

∂ϕ

)
e2iϕ.

(91)
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Injecting eq. (90) in eq. (91) gives

T = 4T1t + 4R1r cos 2(Φ1 − ϕ),

Re2iΦ = 2T0re
2iϕ + 2R0re

2i(2Φ0−ϕ) + 4R1te
2iΦ1 .

(92)

The above relations show a fact previously discussed: for an
anisotropic material, also in R2, in the most general case the
spherical and deviatoric parts of σ depend on both the spherical
and deviatoric parts of ε.

Using these relations in the expressions of Vs and Vd gives

Vs = 4T1t
2 + 4R1r t cos 2(Φ1 − ϕ),

Vd = 2r2 [T0 + R0 cos 4(Φ0 − ϕ)] + 4R1r t cos 2(Φ1 − ϕ).
(93)
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We can then observe the role played by the different polar
invariants of E in the decomposition of the strain energy: T1

affects only Vs , T0 and R0 only Vd while R1 couples Vs with Vd .

For materials with R1 = 0, the two parts are uncoupled. It is then
clear, and simple to be checked, that when R1 = 0 2

σdev = Eεdev , σsph = Eεsph ⇒ (94)

Vs = Vsph → 1

2
εsph · σsph =

1

2
εsph · Eεsph,

Vd = Vdev → 1

2
εdev · σdev =

1

2
εdev · Eεdev ,

(95)

which implies
V = Vsph + Vdev = Vs + Vd . (96)

Finally, the minimal requirement, in R2, for decomposing the strain
energy in a spherical and deviatoric part is R1 = 0, confirming a
general result already found in 3D elasticity for the cubic syngony.

2

Vsph :=
1

2
εsph · Eεsph, Vdev :=

1

2
εdev · Eεdev .
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Bounds on the polar invariants

The positiveness of the strain energy V gives the bounds on the
components of E, so also on its polar invariants.

V is a quadratic form of r and t, eq.(89), that can be written as

V = {r , t}·

[
2 [T0 + R0 cos 4(Φ0 − ϕ)] 4R1 cos 2(Φ1 − ϕ)

4R1 cos 2(Φ1 − ϕ) 4T1

]{
r

t

}
.

(97)
V > 0 ∀{r , t} if and only if the matrix in the previous equation is
positive definite.

This happens3 ⇐⇒ ,

T0 + R0 cos 4(Φ0 − ϕ) > 0,

T1 [T0 + R0 cos 4(Φ0 − ϕ)] > 2R2
1 cos2 2(Φ1 − ϕ),

∀ϕ. (98)

3See Theorem on the leading principal minors
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To be noticed that, because the term at the second member of eq.
(98)2 is a square, hence a nonnegative quantity, if eq. (98)1 is
satisfied then it is also

T1 > 0. (99)

We can obtain relations on the only polar invariants as follows:
first, we transform eq. (98)2 introducing the angle

α = Φ1 − ϕ (100)

which implies
Φ0 − ϕ = ∆Φ+ α, (101)

where
∆Φ = Φ0 − Φ1. (102)

Equation (98)2 becomes hence

T1 [T0 + R0 cos 4(∆Φ+ α)] > 2R2
1 cos2 2α ∀α, (103)

that can be transformed, using standard trigonometric identities,
first to
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T0T1 − R2
1 +

{[
T1R0 cos 4∆Φ− R2

1

]
cos 4α− T1R0 sin 4∆Φ sin 4α

}
> 0 ∀α,
(104)

then to

T0T1 − R2
1 >

√
(T1R0 cos 4∆Φ− R2

1 )2 + T 2
1 R

2
0 sin2 4∆Φ cos 4(α−$) ∀α,

(105)

where

$ =
1

4
arctan

T1R0 sin 4∆Φ

R2
1 − T1R0 cos 4∆Φ

, (106)

a function of only invariants of E.

The quantity under the square root in (105) is strictly positive⇒
eqs. (98)1 and (105) to be true ∀ϕ resume, with some simple
manipulations, to

T0 − R0 > 0,

T0T1 − R2
1 > 0,

T1(T 2
0 − R2

0 )− 2R2
1 [T0 − R0 cos 4∆Φ] > 0.

(107)
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Condition (107)2 is less restrictive than condition (107)3, and can
be discarded. To show this, let us transform eq. (107) to a
dimensionless form upon introduction of the ratios

ξ =
T0T1

R2
1

, η =
R0

T0
. (108)

To remark that by eqs. (55), (99) and (107)1 and because r ≥ 0, ξ
and η cannot be negative quantities. Introducing eq. (108) into
eq. (107) gives

η < 1, ξ > 1, ξ > 2
1− η cos 4∆Φ

1− η2
. (109)

Then, condition (109)3 is more restrictive than condition (109)2 if

2
1− η cos 4∆Φ

1− η2
≥ 1, (110)

thanks to (1091) equivalent to

η2 − 2η cos 4∆Φ+ 1 ≥ 0, (111)

which is always true, as it is easily checked.
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Finally, condition (107)2 can be discarded because less restrictive
than condition (107)3 and the only invariant conditions for positive
definiteness of E are eqs. (107)1,3, along with the two conditions
(55), intrinsic to the polar method:

T0 − R0 > 0,

T1(T 2
0 − R2

0 )− 2R2
1 [T0 − R0 cos 4(Φ0 − Φ1)] > 0,

R0 ≥ 0,

R1 ≥ 0.

(112)

To remark also that conditions (112) imply that the isotropic part
of E is strictly positive:

T0 > 0, T1 > 0. (113)

The above four intrinsic conditions (112) are valid for a completely
anisotropic planar material.

Finally, we notice that eq. (112)2 is equivalent to state that ∆, eq.
(71), is necessarily a positive quantity.
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Symmetries
We ponder now the way the elastic symmetries for tensor T can be
described within the polar formalism.

Quantities L1, L2,Q1,Q2,C1 and C2 are tensor invariants under the
action of a frame rotation.

Nevertheless, a symmetry with respect to an axis inclined of the
angle α on the axis of x1 does not leave unchanged all of these
quantities.

This can be seen in the following way: such a symmetry is
described by the complex variable transformation

z ′′ = s2z , s = e iα; (114)

applying the Verchery’s transformation we get

X1′′ =
1√
2
k z ′′ =

1√
2
k s2z = −i s2X2,

X2′′ =
1√
2
k z ′′ =

1√
2
k s2 z = i s2X1.

(115)
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In matrix form

Xcont ′′ = S1Xcont →

{
X1′′

X2′′

}
=

[
0 −i s2

i s2 0

]{
X1

X2

}
.

(116)
This result shows that X1X2 is still the only invariant for a vector:
a mirror symmetry does not affect the norm of a vector.

The symmetry matrix has a typical structure, given by the
Verchery’s transformation: it is anti-diagonal.

This is true for the symmetry matrices of any rank tensors, that
can be constructed using the same procedure of matrices mj .
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We obtain hence, for rank-two tensors

Lcont ′′ = S2Lcont →


L11′′

L12′′

L21′′

L22′′

 =


−s4

1

1

−s4




L11

L12

L21

L22

 ,

(117)
which shows that a symmetry does not add any more information:
L12, L21 and L11L22 are still tensor invariants also under a mirror
symmetry.

In other words, mirror symmetries have no effects on plane
rank-two tensors.
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Fourth rank tensors:

Tcont ′′ = S4Tcont →

T1111′′

T1112′′

T1121′′

T1122′′

T1211′′

T1212′′

T1221′′

T1222′′

T2111′′

T2112′′

T2121′′

T2122′′

T2211′′

T2212′′

T2221′′

T2222′′



=



s8

−s4

−s4

1

−s4

1

1

−s4

−s4

1

1

−s4

1

−s4

−s4

s8





T1111

T1112

T1121

T1122

T1211

T1212

T1221

T1222

T2111

T2112

T2121

T2122

T2211

T2212

T2221

T2222



,

(118)

that for an elasticity tensor becomes
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Tcont ′′ = S4Tcont →

T1111′′

T1112′′

T1122′′

T1212′′

T1222′′

T2222′′


=



0 0 0 0 0 s8

0 0 0 0 −s4 0

0 0 1 0 0 0

0 0 0 1 0 0

0 −s4 0 0 0 0

s8 0 0 0 0 0





T1111

T1112

T1122

T1212

T1222

T2222


,

(119)

where the anti-diagonal structure is only apparently lost, due to
the removed components.

A scrutiny of eq. (119) shows immediately that L1, L2,Q1 and Q2

are still invariants also under the action of a mirror symmetry.
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This is not the case for C1 and C2:

C ′′1 + iC ′′2 = T1111′′
(

T1222′′
)2

= s8T2222
(
s4T1112

)2
=

= T
1111

(
T

1222
)2

= C1 − iC2 :

(120)

C2 is antisymmetric as effect of the mirror symmetry.

To study the effect of the mirror symmetry, we operate a rotation
of axes, choosing the new frame so that the bisector of the first
quadrant coincide with the axes of mirror symmetry.

For such a choice, it must be

θ = α− π

4
⇒ r = k s. (121)

Then,
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

T1111′

T1112′

T1122′

T1212′

T1222′

T2222′


=



−e−4iα

ie−2iα

1

1

−ie2iα

−e4iα





T1111

T1112

T1122

T1212

T1222

T2222


.

(122)
For the same choice of the new frame, the axes of x ′1 and x ′2 are
equivalent with respect to the mirror symmetry, which implies

T1111′ = T2222′ = T
1111′

,

T1112′ = T1222′ = T
1112′

,
(123)

and hence that
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T1111′ = −e−4iαT1111 ∈ R

T1222′ = −ie2iαT1222 ∈ R;
(124)

by consequence, for the cubic invariants we get

C1 + iC2 = T1111
(
T1222

)2
= T1111′

(
T1222′

)2
∈ R ⇒ C2 = 0.

(125)
This result opens the way to examine the algebraic characterization
of elastic symmetries in R2.

First of all, we remark that if α is the direction of an axis of
symmetry, then β = α + π/2 is also the direction of an axis of
symmetry.
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In fact, if the direction of β becomes the bisector of a new frame
{x ′′1 , x ′′2 }, then x ′′1 = x ′2, x

′′
2 = −x ′1: the axes x ′′1 and x ′′2 are, of

course, still equivalent with respect to a mirror symmetry, that can
be only that of β, their bisector.

This fact just shows that in R2 the monoclinic syngony cannot
exist, the minimal symmetry condition being that of the
orthorhombic syngony, i.e. of orthotropic tensors T.

The direction of the mirror can be obtained considering that the
imaginary part of T1222′ must be null:

Im
(

T1222′
)

= Im
(
−ie2iαT1222

)
= 0 ⇒

tan 2α =
Re
(
T1222

)
Im (T1222)

=
2(T1112 + T1222)

T1111 − T2222
.

(126)
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The general condition for the existence of a mirror symmetry and
hence, for what said above, for the tensor T to be orthotropic, is
eq. (125): C2 = 0. The syzygy becomes then

C 2
1 = Q1Q

2
2 ⇒ Q1 =

(
C1

Q2

)2

. (127)

so that in case of orthotropy, there are only four independent
nonzero invariants: L1, L2,Q2 and C1

4.

The above equation let us obtain the general algebraic relation
characterizing all the types of elastic symmetry in R2:

R0R
2
1 sin 4(Φ0 − Φ1) = 0 (128)

4It is important to preserve, in the set of the independent invariants, the
invariant of the highest degree, that is why we keep C1 in the list.

79 / 120



Such condition depends upon three invariants, R0,R1, Φ0−Φ1, and
can be satisfied when these invariants take some special values.

To each value of one of the above three invariants root of eq.
(128) corresponds a different case of elastic symmetry in R2.

To remark that condition (128) is an intrinsic characterization of
elastic symmetries in R2, because it makes use of only tensor
invariants.

So, all the following special cases are also intrinsic conditions of
orthotropy and so on.

Let us consider all of them separately.
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Ordinary orthotropy

The first solution to (128) that we consider is

sin 4(Φ0 − Φ1) = 0 ⇒ Φ0 − Φ1 = K
π

4
, K ∈ {0, 1} ⇒ C2 = 0 ⇒

(T1112 − T1222)
[
(T1111 − T2222)2 − 4 (T1112 + T1222)2

]
−

(T1112 + T1222) (T1111 − T2222) (T1111 − 2T1122 − 4T1212 + T2222) = 0.

(129)

Condition (129) depends upon a cubic invariant5.

It characterizes intrinsically ordinary orthotropy as the particular
anisotropic situation where the shift angle between the two
anisotropy phases is a multiple of π/4; due to the periodicity of the
functions, only 2 cases are meaningful: 0 or π/4.

5This is the first invariant characterization of orthotropy in R2 and was
explicitly given by Verchery & Vong in 1986
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This result shows that, generally speaking, for the same set of
invariants T0,T1,R0 and R1 two possible and distinct orthotropic
materials can exist: one with K = 0 and the other one with K = 1.

This fact is interesting per se and because it shows that an
algebraic analysis of symmetries, based upon the study of the
invariants, gives more information than a mere geometric study.

If a frame rotation of Φ1 is operated (which corresponds to chose
the frame where Φ1 = 0), eq. (50) can be written as

T1111(θ)=T0+2T1+(−1)KR0 cos 4θ+4R1 cos 2θ,

T1112(θ)=− (−1)KR0 sin 4θ − 2R1 sin 2θ,

T1122(θ)=−T0+2T1−(−1)KR0 cos 4θ,

T1212(θ)=T0−(−1)KR0 cos 4θ,

T1222(θ)=(−1)KR0 sin 4θ − 2R1 sin 2θ,

T2222(θ)=T0+2T1+(−1)KR0 cos 4θ − 4R1 cos 2θ.

(130)
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The parameter K , that is an invariant, characterizes ordinary
orthotropy; its importance has been observed in different studies.

In particular K plays a fundamental role in several optimization
problems: an optimal solution to a given problem becomes the
anti-optimal, i.e. the worst one, when K switches from 0 to 1 and
vice-versa.

To have an idea of the influence of parameter K , i.e. of the type of
ordinary orthotropy, let us consider two examples.

Example 1: variation of the normal stiffness, i.e. of the component
T1111(θ), eq. (130)1. We want to know of which type is its
variation with θ: how much are its stationary points, where they
are located etc.
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The derivatives of T1111(θ) are

dT1111

dθ
= −8R1

[
(−1)Kρ cos 2θ + 1

]
sin 2θ,

d2T1111

dθ2
= −16R1

[
(−1)Kρ cos 4θ + cos 2θ

]
,

(131)

where

ρ =
R0

R1
(132)

is a dimensionless parameter called the anisotropy ratio which
measures the relative importance of the two anisotropy phases.

From eq. (131)1 we find that possible stationary points are

θ1 = 0, θ2 =
1

2
arccos

(−1)K+1

ρ
, θ3 =

π

2
, (133)

with the solution θ2 that exists if and only if ρ > 1. For these
roots,
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T1111(θ1) = T0 + 2T1 + (−1)KR0 + 4R1,

T1111(θ2) = T0 + 2T1 − (−1)K
(
R0 + 2

R1

ρ

)
,

T1111(θ3) = T0 + 2T1 + (−1)KR0 − 4R1,

(134)

We remark also that for K = 0, θ2 ∈ [π/4, π/2), while for
K = 1, θ2 ∈ (0, π/4[. Also,

d2T1111

dθ2

∣∣∣∣
θ1

= −16R1

[
(−1)Kρ+ 1

]
,

d2T1111

dθ2

∣∣∣∣
θ2

= −16R1(−1)K
1− ρ2

ρ
,

d2T1111

dθ2

∣∣∣∣
θ3

= −16R1

[
(−1)Kρ− 1

]
.

(135)

The results are summarized in the following Table.

It can be remarked that the intermediary stationary point changes from a
global minimum to a global maximum when K changes from 0 to 1.
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Table: Stationary points of T1111(θ) for ordinary orthotropy in R2.

K = 0

ρ ≤ 1
θ1 Global max: T1111 = T0 + 2T1 + R0 + 4R1

θ3 Global min: T1111 = T0 + 2T1 + R0 − 4R1

ρ > 1

θ1 Global max: T1111 = T0 + 2T1 + R0 + 4R1

θ2 Global min: T1111 = T0 + 2T1 − R0 − 2R1

ρ

θ3 Local max: T1111 = T0 + 2T1 + R0 − 4R1

K = 1

ρ ≤ 1
θ1 Global max: T1111 = T0 + 2T1 − R0 + 4R1

θ3 Global min: T1111 = T0 + 2T1 − R0 − 4R1

ρ > 1

θ1 Local max: T1111 = T0 + 2T1 − R0 + 4R1

θ2 Global max: T1111 = T0 + 2T1 + R0 + 2R1

ρ

θ3 Global min: T1111 = T0 + 2T1 − R0 − 4R1
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ρ < 1,K = 0, 1

ρ > 1,K = 0

Θ2

ρ > 1,K = 1

2Θ

Figure: Different cases of T1111(θ) for ordinary orthotropy in R2.
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Example 2: a plate is formed by bonding together two identical
orthotropic layers. The problem is to find the orientation angles
δ1 6= δ2 of the two layers that maximize the shear stiffness G12.

G12 is simply the average of the moduli T1212 of the two layers, to
be written in the same common frame:

G12 =
1

2
[T1212(δ1) + T1212(δ2)] , (136)

that with the polar formalism becomes

G12 = T0 − (−1)KR0η, η =
cos 4δ1 + cos 4δ2

2
, −1 ≤ η ≤ 1.

(137)
Gmax

12 is get for η = −1 if K = 0, but for η = 1 if K = 1.

In both the cases, Gmax
12 = T0 + R0.
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Because it must be δ1 6= δ2, the solution for the case K = 0 is
δ1 = ±π/4, δ2 = −δ1, while for the case K = 1 it is
δ1 = 0, δ2 = π/2 (or indifferently δ1 = π/2, δ2 = 0).

It can be also remarked what already said about the effect of K : in
both the cases, the optimal solution for a value of K is the
anti-optimal one for the other K : Gmin

12 = T0 − R0, obtained for
η = 1 when K = 0 and for η = −1 when K = 1.

The two cases of K = 0 or K = 1 corresponds to what Pedersen
names high (K = 1) or low (K = 0) shear modulus materials.

The above example shows the reason of such a denomination, but
the former example as well as the results of other studies on K ,
reveal that its importance is far greater than that of a mere
distinction of orthotropic layers based upon the value of their shear
modulus.
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Two questions concern S, the inverse of T: how is it oriented the
orthotropy of S and of which type is it?

To this purpose, the inverse equations giving r0 and r1 after a
rotation of Φ1 become

r0e
4i(ϕ0−Φ1) =

2

∆

[
R2

1 − T1R0e
4i(Φ0−Φ1)

]
,

r1e
2i(ϕ1−Φ1) = −R1

∆

[
T0 − R0e

4i(Φ0−Φ1)
]
,

(138)

and, because T is orthotropic, eq. (129),

r0e
4i(ϕ0−Φ1) =

2

∆

[
R2

1 − (−1)KT1R0

]
,

r1e
2i(ϕ1−Φ1) = − 1

∆
R1

[
T0 − (−1)KR0

]
.

(139)
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Both the right-hand terms in eq. (139) ∈ R⇒

sin 4(ϕ0 − Φ1) = 0 ⇒ ϕ0 = Φ1 + β0
π

4
,

sin 2(ϕ1 − Φ1) = 0 ⇒ ϕ1 = Φ1 + β1
π

2
,

β0, β1 ∈ {0, 1}. (140)

Let us consider first ϕ1: the real part of eq. (139)2 is

r1 cos 2(ϕ1 − Φ1) = (−1)β1r1 = − 1

∆
R1

[
T0 − (−1)KR0

]
. (141)

In the above equation, it is

T0 − (−1)KR0 > 0, ∆ > 0, R1 > 0, r1 > 0, (142)

then, it is necessarily

β1 = 1 ⇒ ϕ1 = Φ1 +
π

2
. (143)

This result states that S is always turned of π/2 with respect to T.
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We pass now to analyze ϕ0: the real part of eq. (139)1 is

r0 cos 4(ϕ0 − Φ1) =
2

∆

[
R2

1 − (−1)KT1R0

]
⇒

(−1)β0 =
2

r0∆

[
R2

1 − (−1)KT1R0

]
.

(144)

Both the quantities ∆ and r0 are positive, so:

β0 = 0 ⇐⇒ R2
1−(−1)KT1R0 > 0 →

{
K = 0 : R2

1 − T1R0 > 0,

K = 1 : R2
1 + T1R0 > 0 always.

(145)
By consequence

β0 = 0 ⇒ ϕ0 = Φ1 when


K = 0 and R2

1 > T1R0,

or

K = 1,

β0 = 1 ⇒ ϕ0 = Φ1 +
π

4
when K = 0 and R2

1 < T1R0.

(146)
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Then, the difference between the two polar angles of S can be only

ϕ0 − ϕ1 = (β0 − 2)
π

4
, (147)

⇒ T is ordinarily orthotropic⇐⇒ S is.

Hence, putting, as already done for T,

ϕ0 − ϕ1 = k
π

4
, k = β0 − 2, (148)

we get that

K = 0 and R2
1 > T1R0

or

K = 1

 ⇒ k = 0,

K = 0 and R2
1 < T1R0 ⇒ k = 1.

(149)

Finally, an elasticity tensor and its inverse, when ordinarily orthotropic,
can be of a different type; in particular, the possible combinations are
three: (K = 0, k = 0), (K = 0, k = 1), (K = 1, k = 0).
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The bounds on polar invariants in the case of ordinarily orthotropic
materials become

T0 > R0,

T1

[
T0 + (−1)KR0

]
> 2R2

1 ,

R0 ≥ 0,

R1 ≥ 0.

(150)

Equation (150)2 suggests a graphical representation: the level
lines of the surface

S =
2R2

1

T1
(151)

are the intersection with the planes

T0 + (−1)KR0 = γ. (152)

For the same T0 and R0, the constant γ takes the values

γ0 = T0 + R0 for K = 0, γ1 = T0 − R0 for K = 1, (153)

with of course γ0 > γ1.
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So, the two planes intersect the surface S through two different
level curves, the one corresponding to K = 0 higher than that of
K = 1, see the figure.

As a consequence, if for a couple T1,R1 condition (150)2 is
satisfied for K = 0, it is possible that the same is not true when
K = 1.

In this sense, materials with K = 1 are less probable than materials
with K = 0, nonetheless they can exist.

	
  

Figure: Existence domains of the two types of ordinary orthotropy in R2.
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Finally, we have seen that what is commonly considered the
ordinary orthotropy in R2 is actually composed by two distinct
cases, that have quite different mechanical properties.

This type of symmetry is identified by a cubic invariant, that in the
end can be represented by a simple integer, K , which can get only
two values, 0 and 1.

It is possible that for a same material, the stiffness and the
compliance tensors are ordinarily orthotropic of different types.

96 / 120



Special orthotropies

The general equation of elastic symmetries in R2

R0R
2
1 sin 4(Φ0 − Φ1) = 0 (154)

can be satisfied also by other conditions than root (129).

Algebraically speaking, unlike in the case of ordinary orthotropy,
detected by a cubic invariant, all the other solutions are linked to
special values get by quadratic invariants and they are
characterized by the vanishing of at least one of the two
anisotropic phases.

For these reasons, such cases of elastic symmetry are called special
orthotropies, besides the last case, that of isotropy.
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R0-orthotropy

A root of eq. (154) is
R0 = 0 (155)

This equation identifies a special orthotropy, the so-called
R0 − orthotropy (PV, J of Elas, 2002).

The discovery of this type of special orthotropy has been done
thanks to the polar formalism and it constitutes a rather strange
case of elastic behavior, whose existence has been later discovered
also in R3

(R. Forte, 2005).

It is easily recognized that

R0 = 0 ⇒

{
Q1 = C1 = 0, T1111 = T2222 = 0,

(T1111 − 2T1122 − 4T1212 + T2222)2 + 16(T1112 − T1222)2 = 0.

(156)

Like ordinary orthotropy, this case presents 2 orthogonal axes of
symmetry, but it has some peculiar characteristics:
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The Cartesian components are (we fix the frame putting Φ1 = 0)

T1111(θ)=T0+2T1+4R1 cos 2θ,

T1112(θ)=− 2R1 sin 2θ,

T1122(θ)=−T0+2T1,

T1212(θ)=T0,

T1222(θ)=− 2R1 sin 2θ,

T2222(θ)=T0+2T1−4R1 cos 2θ.

(157)
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• the anisotropic phase depending on R0 is absent ⇒
- T1122 and T1212, are isotropic
- the other components depend upon the circular
functions of 2θ → they change like the components of a
2nd -rank tensor

• unlike what happens in all the other cases of anisotropy,
T1112(θ) = T1222(θ) ∀θ
• only 3 invariants are nonzero: L1, L2 and Q2

• the polar angle Φ0 is now meaningless

• this case of orthotropy is not characterized by a special value
of the phase angle between the two anisotropic phases, but by
the absence of one of them
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Let us now consider what happens for the compliance tensor
S = T−1: when R0 = 0, eq. (68) becomes

t0 =
T0T1 − R2

1

4T0(T0T1 − 2R2
1 )
,

t1 =
T0

16(T0T1 − 2R2
1 )
,

r0e
4iϕ0 =

R2
1e

4iΦ1

4T0(T0T1 − 2R2
1 )
,

r1e
2iϕ1 = − R1e

2iΦ1

8(T0T1 − 2R2
1 )
,

(158)
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By consequence

r0 =
R1

4T0(T0T1 − 2R2
1 )
, ϕ0 = Φ1,

r1 =
R1

8(T0T1 − 2R2
1 )
, ϕ1 = Φ1 +

π

2
.

(159)

As already remarked R0 = 0 ; r0 = 0: S depends on both the
anisotropic phases, that is, its components preserve a higher degree
of symmetry than those of T.

This is a rather unusual case, where stiffness and compliance of the
same material do not have the same kind of variation, the same
morphology.

In addition, tensor S has always k = 0.
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Nevertheless, just like T, also S depends upon only 3 independent
nonzero invariants, because

r0 =
r2
1

t1
. (160)

Hence, once a frame chosen fixing Φ1, ϕ0 and ϕ1 are fixed too,
and the only polar moduli t0, t1 and r1 are sufficient to completely
determine S. If Φ1 = 0,

S1111 = t0 + 2t1 +
r 2

1

t1
cos 4θ − 4r1 cos 2θ,

S1112 = − r 2
1

t1
sin 4θ + 2r1 sin 2θ,

S1122 = −t0 + 2t1 −
r 2

1

t1
cos 4θ,

S1212 = t0 −
r 2

1

t1
cos 4θ,

S1222 =
r 2

1

t1
sin 4θ + 2r1 sin 2θ,

S2222 = t0 + 2t1 +
r 2

1

t1
cos 4θ + 4r1 cos 2θ,

(161)
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or, injecting eq. (158) into the previous equation,

S1111 =
1

8(T0T1 − 2R2
1 )

[
T0 + 2T1 + 2

R2
1

T0
(cos 4θ − 1)− 4R1 cos 2θ

]
,

S1112 =
R1

4(T0T1 − 2R2
1 )

(
−R1

T0
sin 4θ + sin 2θ

)
,

S1122 =
1

8(T0T1 − 2R2
1 )

[
T0 − 2T1 − 2

R2
1

T0
(cos 4θ − 1)

]
,

S1212 =
1

4(T0T1 − 2R2
1 )

[
T1 −

R2
1

T0
(cos 4θ + 1)

]
,

S1222 =
R1

4(T0T1 − 2R2
1 )

(
R1

T0
sin 4θ + sin 2θ

)
,

S2222 =
1

8(T0T1 − 2R2
1 )

[
T0 + 2T1 + 2

R2
1

T0
(cos 4θ − 1) + 4R1 cos 2θ

]
.

(162)

Contrarily to what happens for T, S1122 and S1212 are not
isotropic and S1112 6= S1222; nevertheless, just as for any common
orthotropic layer, both them are null in correspondence of the two
symmetry axes.

104 / 120



The general bounds (112) become, for R0-orthotropy,

T0 >
2R2

1

T1
, R1 > 0, (163)

hence only 2 intrinsic bounds are sufficient.

Finally, one can wonder if R0-orthotropic materials do really exist.

Actually, they do; in fact, it is rather simple, using the polar
formalism and the classical lamination theory, to see that a
R0-orthotropic lamina can be fabricated reinforcing an isotropic
matrix by unidirectional fibers arranged in equal quantity along two
directions tilted of 45.
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A special property of R0-orthotropic layers, is linked to the
sensitivity of a laminate to layers’ orientation defects.

It has been shown (PV, J of Elas, 2001) that the influence of such defects
on the uncoupling and quasi-homogeneity of a laminate6 depends
on the anisotropy ratio ρ, eq. (132).

In particular, the sensitivity to uncoupling or quasi-homogeneity is
minimal when ρ = 0, i.e. when the laminate is composed by
R0-orthotropic layers.

6A laminate is said to be quasi-homogeneous if the bending and extension
response are uncoupled and equal (PV, IJSS 2001)
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r0-orthotropy
It has already been noticed that relations (68) are perfectly
symmetric, i.e., they can be rewritten swapping the polar
compliance constants with the polar stiffness constants, i.e.,
putting upper-case letters at the left-hand side and lower-case
letters at the right-hand side of relations (68).

This circumstance, together with the fact that whenever R0 = 0,
then r0 6= 0, implies the existence of another special orthotropy, an
analog of R0-orthotropy, but concerning compliance, not stiffness:
it will be indicated in the following as r0-orthotropy (PV, J of Elas, 2002).

So, we can see that a R0-orthotropic layer is not also
r0-orthotropic, and vice-versa.
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In this sense, special orthotropies of the type R0 are more a
symmetry of a tensor than that of a material, in the sense that a
material, e.g., R0-orthotropic, has a compliance tensor that, at
least apparently7, has a common orthotropic behavior: the
orthotropy axes do not change from stiffness to compliance, but
the mechanical behavior is different in the two cases.

Of course, all the remarks done and results found in the previous
section for R0-orthotropy are still valid for r0-orthotropy, with the
exception of the study of E1(θ), because the reciprocal of T1111 is
meaningless, it is sufficient to change the lower-case letters with
capital letters to all the polar components and the word stiffness
with the word compliance.

7Apparently because if one makes experimental tests on the components of
S or traces the directional diagrams of its components, they look like those of
an ordinarily orthotropic material with k = 0, the difference is in the special
value get by r0, eq. (160).
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Something different can be said about the technical constants; in
fact, putting ϕ1 = 0, the compliance tensor S looks like

S1111(θ) = t0 + 2t1 + 4r1 cos 2θ,

S1112(θ) = −2r1 sin 2θ,

S1122(θ) = −t0 + 2t1,

S1212(θ) = t0,

S1222(θ) = −2r1 sin 2θ,

S2222(θ) = t0 + 2t1 − 4r1 cos 2θ,

(164)

which gives

E1(θ) =
1

S1111(θ)
=

1

t0 + 2t1 + 4r1 cos 2θ
,

G12(θ) =
1

4S1212(θ)
=

1

4t0
,

ν12(θ) = −S1122(θ)

S1111(θ)
=

t0 − 2t1

t0 + 2t1 + 4r1 cos 2θ
,

η1,12(θ) = η2,12(θ) =
S1222(θ)

S1212(θ)
= −2

r1 sin 2θ

t0
.

(165)
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We can hence remark that E1(θ), ν12(θ) and η1,12(θ) vary with 2θ,
while the shear modulus G12(θ) is isotropic.

This is a basic characteristic of r0-orthotropic materials.

It was observed experimentally since the fifties that paper has this
characteristic. Only recently an explanation of this fact in the
framework of classical elasticity has been done, thanks to the polar
formalism (PV, J of Elas, 2010).

Just like for R0-orthotropy, only 3 nonzero independent invariants
are sufficient to completely determine S:t0, t1, r1.

From eq. (165) we get also

t0 =
1

4G12
,

t1 =
1

2

(
1

4G12
− ν12

E1

)
,

r1 =
1

4

(
1 + ν12

E1
− 1

2G12

)
.

(166)
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The general bounds (112) become, for r0-orthotropy,

t0 >
2r2

1

t1
, r1 > 0 (167)

like in the case of R0-orthotropy, so also in this case, of course,
only 2 intrinsic bounds are sufficient.

Using eq. (166), the above bounds can be rewritten also in terms
of technical constants:

1 + ν12

E1
− 1

2G12
> 0,

E1 > G12(1 + ν12)2.

(168)

Finally, just like for the previous case of R0-orthotropic materials, it
is easy to see that for the stiffness tensor it is

R0 =
R2

1

T1
, K = 0. (169)
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Square symmetry

Another root of eq. (154), is

R1 = 0. (170)

Just like the case of R0-orthotropy, also in this case an anisotropy
phase, the one varying with 2θ, vanishes, so it is a special
orthotropy, determined once more by a quadratic invariant:

R1 = 0 ⇒
{

Q2 = C1 = 0, T1112 = T1222 = 0,

(T1111 − T2222)2 + 4(T1112 + T1222)2 = 0.
(171)

The only nonzero invariants are L1, L2 and Q1.

In this case, the polar angle Φ1 is meaningless, so the frame can be
fixed only fixing a value for Φ0.
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Choosing Φ0 = 0, the Cartesian components of T are

T1111(θ)=T0+2T1+R0 cos 4θ,

T1112(θ)=− R0 sin 4θ,

T1122(θ)=−T0+2T1−R0 cos 4θ,

T1212(θ)=T0−R0 cos 4θ,

T1222(θ)=R0 sin 4θ,

T2222(θ)=T0+2T1+R0 cos 4θ.

(172)

We can remark that all the components are periodic of π/2:

Tijkl

(
θ +

π

2

)
= Tijkl(θ) ∀θ. (173)

For this reason, this special orthotropy is known in the literature as
square symmetry and actually, it is the corresponding, in R2, of the
cubic syngony.
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This fact can be immediately appreciated looking at the directional
diagram of its components, see the figure.
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These materials can be fabricated reinforcing an isotropic matrix
with a balanced fabric, i.e. by a fabric having the same amount of
fibers in warp and weft.
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We remark also that components T1122 and T1212 are the same of
the case of ordinary orthotropy with K = 0 and that

T1111(θ) = T2222(θ), T1112(θ) = −T1222(θ) ∀θ. (174)

Because everything is periodic of π/2, there is another couple of
mirror symmetry axes, tilted of π/4 with respect to the directions
Φ0, Φ0 + π/2.

In fact, eq. (124), the direction α of the mirror symmetry is given
by

Im
(

T1111′
)

= Im
(
−ie2iαT1111

)
= 0 ⇒

tan 4α = tan 4
(
α +

π

4

)
=

Re
(
T1111

)
Im (T1111)

=
T1111 − 2T1122 − 4T1212 + T2222

4(T1112 − T1222)
.

(175)
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Unlike the case of R0-orthotropy, when a material has R1 = 0 it
has also r1 = 0: square symmetry is a property of both the stiffness
and the compliance tensors.

Also, for square symmetric materials, tensors T and S preserve the
typical variation with the orientation: their components vary with
4θ.

The general bound for the polar invariants (112) become now

T1(T0 − R0) > 0,

R0 ≥ 0.
(176)
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Isotropy

The last possible syngony for a planar material is isotropy; in this
case, every angle α must determine the direction of a mirror
symmetry.

This means that α must be, at the same time, the solution of eq.
(126) and of eq. (175), which gives the condition

T1111 = T1112 = 0 ⇒ Q1 = Q2 = C1 = 0, ⇒ R0 = R1 = 0 ⇒
T1112 = T1222 = 0, T2222 = T1111, T1111 = T1122 + 2T1212.

(177)

Algebraically, isotropy is hence characterized by the fact that the
two anisotropy phases vanish

It can be remarked also that a material is isotropic if and only if
the conditions for the two special orthotropies are satisfied at the
same time: algebraically, isotropy is determined by the vanishing of
two quadratic invariants.
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Alternatively, isotropy can be determined by a unique condition in
place of the two polar relations R0 = R1 = 0,

R2
0 + R2

1 = 0 ⇒[
(T1111 − 2T1122 − 4T1212 + T2222)2 + 16(T1112 − T1222)2

]2
+[

(T1111 − T2222)2 + 4(T1112 + T1222)2
]2

= 0

(178)

which makes use of a fourth degree invariant.
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Some general remarks on elastic symmetries in R2

The results found in the previous Sections, deserve some
commentary:

• from a purely geometric point of view, i.e. merely considering
the elastic symmetries, nothing differentiate ordinary
orthotropy from the special orthotropy R0 = 0: both of them
have only a couple of mutually orthogonal symmetry axes.

• From the algebraic point of view, they are different: they
depend upon a different number of independent nonzero
invariants and they are determined by invariant conditions
concerning invariants of a different order.

• They also are interpreted differently: ordinary orthotropy
corresponds to a precise value taken by the phase angle
between the two anisotropic phases, R0-orthotropy to the
vanishing of the anisotropic phase varying with 4θ.
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• Also, while ordinary orthotropy preserves the same
morphology also for the inverse tensor, though it is possible a
change of type, from K = 0 to k = 1, R0-orthotropy does not
preserve the same morphology for the compliance tensor,
whose components depend upon the two anisotropic phases.

• From a mechanical point of view, R0-orthotropic materials
have a behavior somewhat different from ordinary orthotropy,
e.g. the components vary like those of a second-rank tensor or
are isotropic.

• Square symmetric materials share some of the remarks done
for R0-orthotropy, but geometrically speaking they are
different from them and from ordinary orthotropy because
they have two couples of mutually orthogonal symmetry axes
tilted of π/4. This gives a periodicity of π/2 to all of the
components.

• It can be seen that special orthotropies have some other
interesting mechanical properties that are not possessed by
ordinarily orthotropic materials.
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