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Topics of the third lesson

• Plane problems
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The planar case

In a great number of situations the problem can be reduced from a
3D to a planar one, because of its geometry and loading conditions.

This reduction can considerably simplify the problem and also
opens the way to the use of special mathematical techniques, like
for instance complex variables.

Actually, different cases can be considered; to this purpose, it is
worth to make a distinction between

• plane tensor: it is a tensor whose components orthogonal to a
given plane, say the plane x3 = 0, are all null (i.e.
σ13 = σ23 = σ33 = 0, ε13 = ε23 = ε33 = 0)

• plane field: it is a tensor function whose components are
scalar functions independent of x3:
σij = σij(x1, x2), εij = εij(x1, x2), ∀i , j = 1, 2, 3.
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A plane field is, hence, not necessarily a plane tensor, and cases are
possible, depending on the assumptions, where one of the tensors
is not plane nor a plane field, while the others are plane tensors
and/or plane fields.

The possible combinations are different, and the literature is not
always completely clear about this topic.

In the following, an exposition as complete as possible is given,
considering the different approaches and the possible definitions
existing in the literature:

• plane strain

• plane stress

• generalized plane stress

• the Lekhnitskii’s theory

• the Stroh’s theory
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The figure shows the general sketch

• the structure belongs to the plane x3 = 0

• basis B = {x1, x2, x3} is the material basis, where the
properties of the material are known (typically, the orthotropic
basis)

• basis, B′ = {x ′1, x ′2, x ′3} is a generic basis, rotated
counterclockwise through an angle θ about the axis x3 = x ′3
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Rotation of the axes in 2D
The change from basis B = {x1, x2} to B′ = {x ′1, x ′2}, sketched in
the Figure, is represented by the orthogonal tensor

U =

 c s 0

−s c 0

0 0 1

 , c = cos θ, s = sin θ, (1)

which gives the rotation matrix for 2D problems

[R] =



c2 s2 0 0 0
√

2cs

s2 c2 0 0 0 −
√

2cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−
√

2cs
√

2cs 0 0 0 c2 − s2


. (2)
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Extracting the plane components of {ε}, i.e. considering in matrix
(2) the relevant components, then

{ε}′ = [R]{ε} →

 ε′1

ε′2

ε′6

 =

 c2 s2
√

2cs

s2 c2 −
√

2cs

−
√

2cs
√

2cs c2 − s2

 ε1

ε2

ε6


(3)

and

[S ′] = [R][S ][R]> →
S′

11

S′
16

S′
12

S′
66

S′
26

S′
22

=


c4 2

√
2c3s 2c2s2 2c2s2 2

√
2cs3 s4

−
√

2c3s c4 − 3c2s2 √
2cs(c2 − s2)

√
2cs(c2 − s2) 3c2s2 − s4 √

2cs3

c2s2 √
2cs(s2 − c2) c4 + s4 −2c2s2 √

2cs(c2 − s2) c2s2

2c2s2 2
√

2cs(s2 − c2) −4c2s2 (c2 − s2)2 2
√

2cs(c2 − s2) 2c2s2

−
√

2cs3 3c2s2 − s4 √
2cs(s2 − c2)

√
2cs(s2 − c2) c4 − 3c2s2 √

2c3s

s4 −2
√

2cs3 2c2s2 2c2s2 −2
√

2c3s c4




S11

S16

S12

S66

S26

S22


(4)

These are the transformation matrices for ε and [S ] in 2D. Similar
results are valid for {σ} and [C ] (Kelvin’s notation)
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The Tsai and Pagano parameters

Tsai and Pagano (1968) proposed a transformation of eq. (4),
obtained exclusively using standard trigonometric identities:



Q′11

Q′12

Q′16

Q′22

Q′26

Q′66


=


1 cos 2θ cos 4θ 0 0 2 sin 2θ sin 4θ

0 0 − cos 4θ 1 0 0 − sin 4θ

0
√

2
2

sin 2θ
√

2 sin 4θ 0 0
√

2 cos 2θ
√

2 cos 4θ

1 − cos 2θ cos 4θ 0 0 −2 sin 2θ sin 4θ

0
√

2
2

sin 2θ −
√

2 sin 4θ 0 0
√

2 cos 2θ −
√

2 cos 4θ

0 0 −2 cos 4θ 0 2 0 −2 sin 4θ





U1

U2

U3

U4

U5

U6

U7


(5)

[Q]: reduced stiffness matrix of a plane stress state (see below).

The original transformation, written for the Voigt’s notation, is
slightly different and valid only for [Q], while eq. (5) can be
applied to [S ] too.
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Ui : Tsai and Pagano parameters, linear combinations of the
components of the matrix in the original frame:

U1 =
1

8
(3Q11 + 2Q12 + 3Q22 + 2Q66),

U2 =
1

2
(Q11 − Q22),

U3 =
1

8
(Q11 − 2Q12 + Q22 − 2Q66),

U4 =
1

8
(Q11 + 6Q12 + Q22 − 2Q66),

U5 =
1

8
(Q11 − 2Q12 + Q22 + 2Q66),

U6 =
1

2
√

2
(Q16 + Q26),

U7 =
1

2
√

2
(Q16 − Q26).

(6)
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In the literature, the Ui s are often called invariants, like in the
same title of the original publication, but this is not correct:
U2,U3,U6 and U7 are frame dependent quantities.

To remark that Tsai and Pagano make use of 7 quantities to
express 6 other functions. As a consequence, the Ui s are not all
independent, e.g.

U5 =
U1 − U4

2
. (7)

Th Ui s have not a direct and clear physical meaning, nor they are
immediately linked to the anisotropic properties or to the elastic
symmetries.

Their use is exclusively limited to the design of laminates.
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Recalling some classical results and tools

It is worth now to recall some classical topics in plane elasticity, to
be used in the following.

Airy’s stress function (1862)

Airy noticed that in 2D problems the equilibrium equations of a
body subjected to only surface tractions (i.e. with a null body
vector) indicate that the σij can be regarded as the second-order
partial derivatives of a single scalar function, the Airy’s stress
function

The knowledge of the Airy’s stress function gives the σαβ that
automatically satisfy the equilibrium equations.

We give here the most general approach to the Airy’s stress
function, valid regardless of the type of material and including also
the presence of a body vector (cf. Milne-Thomson).
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Consider a plane system, for which we assume

σij = σij(x1, x2), σ23 = σ31 = 0, (8)

which implies that the equilibrium equations reduce to

σαβ,β = bα, α, β = 1, 2. (9)

For such a plane problem, we introduce the complex variable

z = x1 + ix2 → z = x1 − ix2 (10)

and conversely

x1 =
1

2
(z + z), x2 = −1

2
i(z − z). (11)
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For the differential operators we have then the following
equivalences

∂

∂x1
=

∂

∂z
+

∂

∂z
,

∂

∂x2
= i

∂

∂z
− i

∂

∂z
,


2
∂

∂z
=

∂

∂x1
− i

∂

∂x2
,

2
∂

∂z
=

∂

∂x1
+ i

∂

∂x2
.

(12)

If (12)1 is injected into (9) we get

∂σ11

∂z
+
∂σ11

∂z
+ i

(
∂σ12

∂z
− ∂σ12

∂z

)
= b1,

∂σ21

∂z
+
∂σ21

∂z
+ i

(
∂σ22

∂z
− ∂σ22

∂z

)
= b2;

(13)

multiplying the second equation by −i and adding the result to the
first equation gives

∂Θ

∂z
− ∂Φ

∂z
= b1 − ib2, (14)
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Θ = σ11 + σ22, Φ = σ22 − σ11 + 2iσ12, (15)

are the Kolosov’s fundamental stress combinations (1909).

Be Θ0, Φ0 a particular solution of (14) corresponding to the action
of the body vector, i.e. such that

∂Θ0

∂z
− ∂Φ0

∂z
= b1 − ib2; (16)

then, the general solution of (14) is

Θ = Θ0 + 4
∂2χ

∂z∂z
, Φ = Φ0 + 4

∂2χ

∂z2
. (17)

The arbitrary real valued function

χ = χ(x1, x2) = χ(z , z) (18)

is the Airy’s stress function.
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The solution of the stress problem is hence reduced to the
knowledge of the Airy’s function: from eqs. (15) and (17) we get

σ11 =
1

2
Θ − 1

4
(Φ+ Φ) = σ0

11 +
∂2χ

∂x2
2

,

σ22 =
1

2
Θ +

1

4
(Φ+ Φ) = σ0

22 +
∂2χ

∂x2
1

,

σ12 = −1

4
i(Φ− Φ) = σ0

12 −
∂2χ

∂x1∂x2
,

(19)

where

σ0
11 =

1

2
Θ0 −

1

4
(Φ0 + Φ0),

σ0
22 =

1

2
Θ0 +

1

4
(Φ0 + Φ0),

σ0
12 = −1

4
i(Φ0 − Φ0),

(20)

are a particular solution of the equilibrium equations (9)
accounting for the body vector.
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In case of body forces depending upon a potential U, f = ∇U,
then eq. (19) becomes

σ11 =
∂2χ

∂x2
2

− U,

σ22 =
∂2χ

∂x2
1

− U,

σ12 = − ∂2χ

∂x1∂x2
.

(21)

When the body is acted upon uniquely by surface tractions, eq.
(19) becomes simply

σ11 =
∂2χ

∂x2
2

,

σ22 =
∂2χ

∂x2
1

,

σ12 = − ∂2χ

∂x1∂x2
.

(22)
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It is possible to introduce the The Airy’s function without making
use of complex variables:

Theorem
Be f1(x1, x2) and f2(x1, x2) two scalar plane functions such that

∂f1
∂x1

+
∂f2
∂x2

= 0; (23)

then a potential function Ψ(x1, x2) exists such that

f1 = − ∂Ψ
∂x2

, f2 =
∂Ψ

∂x1
. (24)

The equilibrium equations of a system subjected to only surface
tractions and where σij = σij(x1, x2) are precisely in the form of
(23):
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σ11,1 + σ12,2 = 0,

σ21,1 + σ22,2 = 0,

σ31,1 + σ32,2 = 0,

⇒ (25)

there exist scalar functions ϕi (x1, x2) such that

σi1 = −ϕi ,2, σi2 = ϕi ,1. (26)

Because σ12 = σ21,
ϕ1,1 + ϕ2,2 = 0, (27)

which once more is in the form of (23), so it exists a scalar
function χ(x1, x2) such that

ϕ1 = −χ,2 , ϕ2 = χ,1 . (28)

Then, by (26), we get the (22).
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Putting ϕ3 = −Ψ , called stress function (cf. Ting, 1996), we get
also

σ23 = −Ψ,1 , σ31 = Ψ,2 . (29)

When the stresses are represented through χ and Ψ by eqs. (22)
and (29), then the equilibrium equations are automatically
satisfied.

To remark that σ33 cannot be determined by this way.

We will see further the use of functions χ and Ψ .
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Plane and antiplane states and tensors
The reduction from a 3D to a 2D problem can be done in 2
different cases:

• plane strain

• plane stress

There are substantial differences between the 2 cases, but a
common algebraic basis can be given for both of them.

We rewrite the Hooke’s law like (p stands for plane and a for
antiplane) {

{σp} = [C1]{εp}+ [C2]{εa},
{σa} = [C2]>{εp}+ [C3]{εa},

(30)

and its inverse like{
{εp} = [S1]{σp}+ [S2]{σa},
{εa} = [S2]>{σp}+ [S3]{σa}.

(31)
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In eqs. (30) and (31) it is:

{σp} =


σ1

σ2

σ6

 , {σa} =


σ3

σ4

σ5

 , (32)

{εp} =


ε1

ε2

ε6

 , {εa} =


ε3

ε4

ε5

 , (33)

[C1] =

 C11 C12 C16

C22 C26

sym C66

 , [C2] =

 C13 C14 C15

C23 C24 C25

C36 C46 C56

 ,

[C3] =

 C33 C34 C35

C44 C45

sym C55

 ,
(34)
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[S1] =

 S11 S12 S16

S22 S26

sym S66

 , [S2] =

 S13 S14 S15

S23 S24 S25

S36 S46 S56

 ,

[S3] =

 S33 S34 S35

S44 S45

sym S55

 .
(35)

These results are the common algebraic basis for developing,
separately but dually, the two cases of plane strain and plane stress.

We will call, in short, plane tensors all those with the superscript p
and antiplane all those with the superscript a, i.e. it is antiplane
any component out of the plane x3 = 0.
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Plane strain

We define plane strain a state for which the displacement vector
u = (u1, u2, u3) is such that

u3 = 0, uα = uα(x1, x2), α = 1, 2. (36)

Through the strain-displacement relations eq. (36) gives

ε3 = u3,3 = 0, ε4 =
u2,3 + u3,2

2
= 0, ε5 =

u1,3 + u3,1

2
= 0 →

{εa} = {0}, {εp} = {εp(x1, x2)},
(37)

which justifies the name plane strain: the antiplane strain {εa} is
null and the plane strain {εp} is a plane field.
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From eqs. (30) and (31) we get hence, for the in plane tensors,

{σp} = [C1]{εp}, {εp} = [Σ]{σp}, (38)

while for the antiplane tensors it is

{σa} = [C2]>{εp} = −[S3]−1[S2]>{σp} = [C2]>[Σ]{σp},
{εa} = {0},

(39)

with
[Σ] = [C1]−1 = [S1]− [S2][S3]−1[S2]>, (40)

the reduced compliance matrix.

The stiffness of the in-plane part, [C1], does not change with
respect to the 3D case, while the in-plane compliance [Σ] 6= [S1].

Also, unlike {εa}, {σa} 6= {0}: the antiplane stress is not null in
plane strain

24 / 73



To detail the components of [Σ] for a triclinic material is
complicate.

Monoclinic material, with x3 = 0 plane of symmetry:

Σij = Sij −
Si3Sj3
S33

, i , j = 1, 2, 6, (41)

and

{σa} =


σ3

σ4

σ5

 =


C13ε1 + C23ε2 + C36ε6

0

0

 . (42)

Through eq. (39) we get also

σ3 = −S13σ1 + S23σ2 + S36σ6

S33
. (43)

→ The transverse shear components σ4 and σ5 vanish in plane
strain. This is not the case for σ3.
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Orthotropic material with {x1, x2, x3} the orthotropic frame:
because Ci6 = Si6 = 0 ∀i = 1, 2, 3,

[Σ] =

 S11 −
S2

13
S33

S12 − S13S23
S33

0

S22 −
S2

23
S33

0

sym S66

 , (44)

σ3 = C13ε1 + C23ε2 = −S13σ1 + S23σ2

S33
. (45)

Isotropic body:

[Σ] =

 1−ν2

E −ν(1+ν)
E 0

1−ν2

E 0

sym 1+ν
E

 , (46)

σ3 =
νE

(1− 2ν)(1 + ν)
(ε1 + ε2) = ν(σ1 + σ2). (47)
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Three remarks:

1. condition (36) implies not only that {εp} is a plane field, eq.
(37), but also, through the Hooke’s law, that {σ} is a plane
field too:

σi = σi (x1, x2), ∀i = 1, ..., 6; (48)

2. plane strain is typical of infinitely long cylindrical bodies
subjected to loadings that do not depend upon x3, the
longitudinal axis (e.g. a pipe with internal or/and external
pressure, a rail under its own weight etc.). In such cases, the
assumption (36) is plausible.

3. generally speaking σ3(x1, x2) 6= 0. Hence, a plane strain is
possible, for finite cylinders, only when appropriate actions are
applied at the bases of the cylinder, in order to ensure the
existence of σ3(x1, x2) 6= 0 and that u3 = 0.
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The concept of plane strain can get different definitions in the
literature; the definition given here, eq. (36), is the same one given
by Love, Muskhelishvili and by Rand & Rovenski.

A general and rigorous definition, valid not only for infinitely long
cylinders, is given by Milne-Thomson:

a state of plane deformation is said to exist if the
following conditions are satisfied: (i) one of the principal
directions of deformation is the same at every point of
the material; (ii) apart from a rigid body movement of
the material as a whole, particles which occupy planes
perpendicular to the fixed principal direction prior to the
deformation continue to occupy the same planes after the
deformation.
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To remark the use of the term plane deformation and not of plane
strain.

Of course, the above definition implies that there is no warping of
the material planes orthogonal to the invariable principal direction
and that

u3 = 0, ε3 = 0, (49)

but not the second assumption of (36), uα = uα(x1, x2), α = 1, 2.

Milne-Thomson shows that this is a consequence of the definition
of plane strain and of the strain-displacement relation in non-linear
elasticity, i.e. taking the Green-Lagrange tensor as measure of
deformation

εij =
1

2
(ui ,j + uj ,i + uk,iuk,j) → ε3 = u3,3 +

1

2
(u2

1,3 + u2
2,3 + u2

3,3),

(50)
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Through eq. (49), this gives

u2
1,3 + u2

2,3 = 0 ⇒ u1,3 = u2,3 = 0 ⇒ uα = uα(x1, x2), α = 1, 2.
(51)

This result along with (49)1 give

ε1 = u1,1 +
1

2
(u2

1,1 + u2
2,1),

ε2 = u2,2 +
1

2
(u2

1,2 + u2
2,2),

ε6 =
1√
2

(u1,2 + u2,1 + u1,1u1,2 + u2,1u2,2),

ε3 = ε4 = ε5 = 0.

(52)

Of course, the results of eq. (52) are valid for ε too in the
framework of the linearized theory.

By consequence, {σ} = {σ(x1, x2)} is a plane field too, so giving
what Milne-Thomson calls a plane system
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Ting introduces the argument as antiplane deformations and then
he develops, substantially, the theory described above and later on.
He introduces another category of plane deformation problems,
those where the only basic assumption is

ui = ui (x1, x2) ∀i = 1, 2, 3. (53)

There is a substantial difference between this plane case and the
one developed above or defined by Milne-Thomson, because now
u3 6= 0. Ting calls this type of plane deformation the Stroh
formalism

Green & Zerna introduce the concept of plane strain as a system
where the displacement and strain components are independent
from x3, so substantially the same definition given by Ting for the
Stroh formalism, and develop all the theory in the framework of
nonlinear elasticity, which is far beyond our scope.
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Plane stress
An elastic body is in a plane stress state when the antiplane stress
{σa} is null and the plane stress {σp} is a plane function:

{σa} = {0} → σ3 = σ4 = σ5 = 0,

{σp} = {σp(x1, x2)}, → σi = σi (x1, x2) ∀i = 1, 2, 6.
(54)

As a consequence of (54) and of the equation of motion also the
body vector is a plane function: b = b(x1, x2).

The case of plane stress is completely analogous to the previous
one of plane strain: because of the symmetry of relations (30) and
(31), the developments for plane stress can be obtained repeating
verbatim those for plane strain, simply replacing the strains with
stresses, the compliances with stiffnesses:

{σp} = [Q]{εp},
{εp} = [S1]{σp},

(55)

32 / 73



and for the antiplane tensors

{σa} = 0,

{εa} = [S2]>{σp} = −[C3]−1[C2]>{εp} = [S2]>[Q]{εp},
(56)

with
[Q] = [S1]−1 = [C1]− [C2][C3]−1[C2]>, (57)

the reduced stiffness matrix.

In a dual manner with respect to the results of plane strain, in case
of plane stress the compliance of the in-plane part, [S1], does not
change with respect to the 3D case, while the in-plane stiffness
changes: [Q] 6= [C1].

Also, unlike {σa}, {εa} 6= {0}: the antiplane strain is not null in
plane stress, generally speaking.
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For a monoclinic material we obtain

Qij = Cij −
Ci3Cj3

C33
, i , j = 1, 2, 6, (58)

and

{εa} =


ε3

ε4

ε5

 =


S13σ1 + S23σ2 + S36σ6

0

0

 . (59)

Through eq. (56) we get also

ε3 = −C13ε1 + C23ε2 + C36ε6

C33
. (60)

So, in the case of monoclinic material with x3 = 0 plane of
symmetry, the transverse shear deformations ε4 and ε5 vanish in
plane stress, but not ε3.
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For an orthotropic material with {x1, x2, x3} the orthotropic frame
we get:

[Q] =

 C11 −
C2

13
C33

C12 − C13C23
C33

0

C22 −
C2

23
C33

0

sym C66

 , (61)

ε3 = S13σ1 + S23σ2 = −C13ε1 + C23ε2

C33
. (62)

Using the fact that [Q] = [S1]−1, we get also

[Q] =


S22

S11S22−S2
12
− S12

S11S22−S2
12

0

S11

S11S22−S2
12

0

sym 1
S66

 ; (63)

this result gives a bound on the Young’s moduli: because

Sii =
1

Ei
, Sji = −

νij
Ei
,
νij
Ei

=
νji
Ej
⇒ Qii > Ei , i = 1, 2 (64)
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Finally, for an isotropic body we get

[Q] =


E

1−ν2
νE

1−ν2 0
E

1−ν2 0

sym E
1+ν

 , (65)

ε3 = − ν
E

(σ1 + σ2) = − ν

1− ν
(ε1 + ε2). (66)

A remark about the displacement vector u = (u1, u2, u3): generally
speaking, it is not a plane function:

u = u(x1, x2, x3), (67)

i.e., the problem is not plane for the displacements. This is a
fundamental difference with plane strain; in fact, for plane strain,
u, ε and σ are all plane fields.
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To end this section, some commentary about the notion of plane
stress in the literature. The definition given here, eq. (54) is rather
classical, and it is, for instance, that given by Love or by Rand &
Rovenski.

Milne-Thomson gives perhaps the most general definition:

a plane system is one for which there exists a plane such
that the stress tensor is the same at all material points of
any normal to this plane as at the material point in which
that normal meets the plane.

To remark the use of the term plane system and not of plane stress
by Milne -Thomson. Also, his definition is not completely identical
to that given in (54), because it is not required that condition
(54)1 be satisfied.
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Nevertheless, the same author immediately after considers only
plane systems with σ4 = σ5 = 0. This implies that, for the third
equation of motion, the body vector b is planar: b3 = 0. So, all
the actions are parallel to the plane of the system.

Lekhnitskii analyzes exactly the general case of plane system as
defined by Milne-Thomson and Ting ting calls explicitly such a
system the Lekhnitskii Formalism.

The state of plane stress is typical of thin, flat bodies, like plates or
slabs. A plate is thin when its thickness is much smaller than its
typical in-plane dimension.

If the plate is submitted to only in-plane loadings, then, because of
the small thickness of the plate and assuming a continuous
distribution of the σijs through the plate’s thickness, assumptions
(54) are a good approximation of reality.

38 / 73



Generalized plane stress
The concept of generalized plane stress was first introduced by
Filon (1903) and successively developed by Love, Muskhelishvili
and by Lekhnitskii, as a special case of his plane theory.

Let us consider a thin plate whose thickness is 2t, acted upon only
by loadings parallel to the mid-plane x3 = 0 and with the two
surfaces unloaded:

σ3 = σ4 = σ5 = 0 at x3 = ±t. (68)

For a triclinic material, the plane stress {σp} will generate also
antiplane strains, {εa} 6= {0}, which implies that u3(x1, x2, 0) 6= 0:
the mid-plane of the plate will warp under in-plane loadings.

To exclude this possibility, we will consider only anisotropic
materials with at least

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 (69)
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The most general materials satisfying such requirements, are those
of the monoclinic syngony with x3 = 0 as plane of symmetry.

We introduce the average displacements

ûi =
1

2t

∫ +t

−t
ui dx3 ∀i = 1, 2, 3, (70)

and

[ui ] =
ui (x1, x2, t)− ui (x1, x2,−t)

2t
. (71)

We make the further assumption that all the applied forces are
symmetrically distributed with respect to the mid-plane of the
plate, so that the stresses are symmetric with respect to this plane.

As a consequence, also the displacements will be symmetric and,
by (70) and (71), it will be

[u1] = [u2] = 0, û3 = 0 (72)
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which gives

1

2t

∫ +t

−t
ui ,j dx3 =


ûi ,j ∀i , j 6= 3,

ε̂3 if i = j = 3,

0 otherwise.

(73)

This result means that the average displacement is a plane vector
and also a plane field:

û3 = 0, ûα = ûα(x1, x2), α = 1, 2, (74)

and that for the average strain it is

ε̂4 = ε̂5 = 0, ε̂3 6= 0, {ε̂} = {ε̂(x1, x2)}, (75)

i.e. the strain tensor in not plane but it is a plane field.

As a consequence, considering the requirements (69), integrating
the Hooke’s law over the thickness gives

σ̂i = Ci1ε̂1 + Ci2ε̂2 + Ci3ε̂3 + Ci6ε̂6. (76)
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Applying the third equilibrium equation

σ5,1 + σ4,2 +
√

2σ3,3 = 0, (77)

at the plate’s surfaces, x3 = ±t, for the (68) we get

σ3,3 = 0. (78)

The consequence of (68) and of the last result is

σ3 ' 0 ∀x3 ∈ [−t, t] ⇒ σ̂3 = 0. (79)

Then, writing the (76) for σ̂33 gives the condition

ε̂3 = − 1

C33
(C31ε̂1 + C32ε̂2 + C36ε̂6) , (80)

that injected back into (76) gives

{σ̂} = [Ĉ ]{ε̂}, (81)

with [Ĉ ] the reduced elastic stiffness matrix:
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Ĉij = Cij −
Ci3Cj33

C33
. (82)

The above components define the reduced elastic stiffness matrix
exactly as [Q], see eq. (58).

Nevertheless, the difference with plane stress is that in generalized
plane stress all the equations are satisfied on the average.

If t is very small compared to the other relevant dimensions of the
plate then generalized plane stress is a good approximation.

To notice that, through eqs. (69) and (75) it is

σ̂4 = σ̂5 = 0. (83)

Let us now integrate the equilibrium equations on the thickness of
the plate; then, eq. (68) gives

√
2σ̂1,1 + σ̂6,2 = 0,

σ̂6,1 +
√

2σ̂2,2 = 0,

σ̂5,1 + σ̂4,2 = 0.

(84)
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Mechanical consistency of plane states

We have introduced plane strain and plane stress; we ponder now
their mechanical consistency, i.e. if such states are physically
possible.

Plane strain: injecting the Hooke’s law in the equilibrium
equations of a body submitted only to loadings on its boundary,
these reduce to

Ei111ε11,1 + 2Ei112ε12,1 + Ei122ε22,1+

Ei211ε11,2 + 2Ei212ε12,2 + Ei222ε22,2 = 0
∀i = 1, 2, 3. (85)

The coefficients of the third equation are

E3111 = C15,E3121 = E3112 = C56,E3212 = E3221 = C46,

E3222 = C24,E3211 = C14,E3122 = C25.
(86)

All of these coefficients are null for a monoclinic material with
x3 = 0 as plane of symmetry.
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Let us now consider the antiplane deformations

u1 = u2 = 0, u3 = u3(x1, x2) → u3,3 = ε33 = 0, {εp} = {0}.
(87)

Now the three equations of equilibrium reduce to

Ei113ε13,1+Ei123ε23,1+Ei213ε13,2+Ei223ε23,2 = 0 ∀i = 1, 2, 3. (88)

The coefficients of the two first equations (88) are exactly the (86).

Hence, a monoclinic body satisfies automatically, for each applied
loading on the boundary, the third plane equilibrium equation and
the two first antiplane equations: plane and antiplane deformations
are uncoupled.

The monoclinic condition is not the minimal requirement: the true
necessary conditions are the (86) to be null, while for a monoclinic
material, required for generalized plane stress, it is also
C34 = C35 = 0
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This result is obviously valid also for the other elastic syngonies
that satisfy the same conditions, namely for the orthotropic,
tetragonal, axially-symmetric, cubic and isotropic ones.

For all such materials, the plane strain state is a possible situation
and it is an exact theory. To remark that in this circumstance, it is
also σ4 = σ5 = 0.

For a triclinic or trigonal body, or for any other syngony not
correctly oriented (i.e. for which x3 = 0 is not one of the symmetry
planes), a plane strain deformation or an antiplane one cannot
exist, generally speaking: also in the case where the three
components of displacement ui depend upon only x1 and x2, all of
them are coupled, so that u3 does not vanish, in general.

Such a state is called a generalized plane strain: u3 6= 0, but
ε3 = 0 because nothing is function of x3, so that u3,3 = 0.
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The compatibility equations give an equation for the Airy’s stress
function (22).

In fact, with the assumptions (37) all the compatibility equations
are automatically satisfied but the first

√
2ε6,12 = ε1,22 + ε2,11. (89)

Using eq. (38)2 and expressing the stress components by the (22),
remembering that σ6 =

√
2σ12, we get the following homogenized

biharmonic equation for the Airy’s stress function χ:

∇4
1χ = 0, (90)

where

∇4
1 = Σ22

∂4

∂x4
1

− 2
√

2Σ26
∂4

∂x3
1∂x2

+ 2(Σ12 +Σ66)
∂4

∂x2
1∂x

2
2

−

2
√

2Σ16
∂4

∂x1∂x3
2

+Σ11
∂4

∂x4
2

(91)

is the generalized biharmonic differential operator.
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Changing of material syngony or of plane state, other operators
can be introduced; for instance, it can be easily checked that for
an orthotropic material, Σ16 = Σ26 = 0, so that ∇4

1 has a simpler

form, while for an isotropic material we get ∇4
1 = 1−ν2

E ∇
4, where

∇4 is the customary double laplacian.

Plane stress: if the Airy’s function is used in the first compatibility
equation and proceeding like in the previous case, but now with the
strain-stress relation (55)2, we get the biharmonic equation for χ

∇4
2χ = 0, (92)

with now

∇4
2 = S22

∂4

∂x4
1

− 2
√

2S26
∂4

∂x3
1∂x2

+ 2(S12 + S66)
∂4

∂x2
1∂x

2
2

−

2
√

2S16
∂4

∂x1∂x3
2

+ S11
∂4

∂x4
2

(93)

the generalized biharmonic operator for the present case.
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Formally, ∇4
2 is identical to ∇4

1, but the components of the
compliance tensor [S ] are to be used in place of those of the
reduced compliance [Σ].

The other compatibility equations, for a strain tensor that is a
plane field but not a plane tensor, because generally speaking in
plane stress {εa} 6= {0}, are

ε3,11 = 0, ε3,12 = 0, ε3,22 = 0, ε4,11 = ε5,12, ε4,12 = ε5,22. (94)

Also considering materials that are at least monoclinic, for which
ε4 = ε5 = 0, so that the two last equations are automatically
satisfied, the first three equations are left unsatisfied, unless ε3 is a
linear function of x1, x2:

ε3(x1, x2) = c0 + c1x1 + c2x2. (95)

In all the other cases, the plane stress analysis is not exact, and
can be considered as accurate only in the limit of thin plates acted
upon by surface tractions parallel to the mid-plane of the plate.
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Comparison of plane states
Plane strain:

• the displacement is a plane vector and also a plane field:
u3 = 0, uα = uα(x1, x2), α = 1, 2;

• the strain tensor is plane and also a plane field:
{ε} = {εp(x1, x2)}, {εa} = {0};

• the stress tensor is not plane but it is a plane field:
{σ} = {σ(x1, x2)}; for a material with the moduli (86) null, it is
also σ4 = σ5 = 0, but σ3 6= 0;

• the equilibrium equations in case of null body vector, for a material
with the moduli (86) null, reduce to σij,j = 0 j = 1, 2, ∀i = 1, 2, 3;
the third equation corresponds to the antiplane state, uncoupled
from the plane one;

• the Hooke’s law does not change with respect to the 3D case:
{σ} = [C ]{εp};

• the inverse Hooke’s law becomes: {εp} = [Σ]{σp}, with [Σ] the
reduced compliance matrix whose components are given by eq. (41)
for a material at least monoclinic;

• the theory of plane strain is exact. 50 / 73



Plane stress

• the displacement is not a plane vector nor a plane field:
ui = ui (x1, x2, x3), ∀i = 1, 2, 3;

• the strain tensor is not plane but it is a plane field:
{ε} = {ε(x1, x2)}; for a material at least monoclinic, it is also
ε4 = ε5 = 0, but ε3 6= 0;

• the stress tensor is plane and also a plane field:
{σ} = {σp(x1, x2)};
• the equilibrium equations for a null body vector reduce to
σij ,j = 0 i , j = 1, 2, regardless of the material;

• the Hooke’s law becomes: {σp} = [Q]{εp}, with [Q] the
reduced stiffness matrix whose components for a material at
least monoclinic are given by eq. (58);

• the inverse Hooke’s law does not change with respect to the
3D case: {ε} = [S ]{σp};
• the theory of plane stress is not exact.
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Generalized plane stress

• all the relations are given on the average, i.e. as average
values on the thickness of the plate, not locally;

• the theory is valid for thin plates of a material at least
monoclinic, with σ3 = σ4 = σ5 = 0 on the plate’s surfaces
and submitted uniquely to loadings parallel to the plate’s
mid-plane;

• the average displacement is a plane vector and also a plane
field: û3 = 0, ûα = ûα(x1, x2), α = 1, 2;

• the average strain tensor is not plane, because ε̂4 = ε̂5 = 0,
but ε̂3 6= 0; nevertheless, it is a plane field: {ε̂} = {ε̂(x1, x2)};
• the average stress tensor is not plane but it is a plane field:
{σ̂} = {σ̂p(x1, x2)};
• the equilibrium equations reduce to
σ̂ij ,j = 0 j = 1, 2 ∀i = 1, 2, 3;
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• the average Hooke’s law becomes: {σ̂} = [Ĉ ]{ε̂}, with
[Ĉ ] = [Q] the reduced stiffness matrix whose components are
given by eq. (58);

• the theory of generalized plane stress is exact, on the average,
only if σ̂3 is exactly zero everywhere in the plate.

It appears hence that plane strain and generalized plane stress are
formally identical, provided that the stiffness matrix of plane strain
is replaced by the reduced stiffness matrix for generalized plane
stress, and of course considering that in generalized plane stress all
the relations are valid on the average.

Nevertheless, some differences remain, for instance σ3 6= 0 and
ε3 = 0 in plane strain, while it is assumed that σ̂3 = 0 and ε3 6= 0
in generalized plane stress.

The case of plane stress is not formally identical to plane strain nor
to generalized plane stress because the displacement vector is not
plane nor a plane field, besides the fact that ε3 6= 0 and σ3 = 0.
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The Lekhnitskii theory

We will name a Lekhnitskii Problem every problem of the elastic
equilibrium of an anisotropic body whose stress field is constrained
to satisfy uniquely the condition of plane field:

σ = σ(x1, x2), (96)

hence, generally speaking, with {σa} 6= {0}, i.e. the stress is not
necessarily a plane tensor.

The same properties, by the reverse Hooke’s law, are true for the
strain too, but not for the displacement:

ε = ε(x1, x2), u = u(x1, x2, x3). (97)
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The Lekhnitskii theory or formalism is the mathematical theory for
obtaining a general formulation of the solution to the Lekhnitskii
Problem.

It is based upon the use of the stress functions χ and Ψ . We will
see that the Lekhnitskii theory comprehends, as special cases:

• plane deformation

• generalized plane strain

• generalized plane stress

We follow here the original approach of Lekhnitskii, considering the
general case of an anisotropic body belonging to any possible
elastic syngony, submitted to surface tractions on the boundaries
and to volume forces depending upon a potential U,

f = ∇U. (98)

55 / 73



The decomposition of the displacement field

The displacement vector u(x1, x2, x3) is decomposed into a plane
vector field1

up = up(x1, x2) (99)

and a field complementary to the plane one, depending also upon
x3. This can be done in the following way: in the Kelvin’s
notation, it is

ε1 = u1,1, ε2 = u2,2, ε3 = u3,3,

ε4 =
u2,3 + u3,2√

2
, ε5 =

u1,3 + u3,1√
2

, ε6 =
u1,2 + u2,1√

2
.

(100)

Because the stress is a plane field, for the Hooke’s law it is also

εi = εi (x1, x2) ∀i = 1, ..., 6; (101)

hence in eq. (100) the right-hand sides are independent of x3.

1Here the symbol p denotes only a plane field, not a plane vector.
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The most general expression for the components of u(x1, x2, x3) is

u1(x1, x2, x3) = up1 (x1, x2) + u(x2, x3),

u2(x1, x2, x3) = up2 (x1, x2) + v(x1, x3),

u3(x1, x2, x3) = up3 (x1, x2) + x3w(x1, x2).

(102)

Injecting eq. (102) into eq. (100)4,5,6 gives

ε4 =
up3,2 + v,3 + x3w,2√

2
, ε5 =

up3,1 + u,3 + x3w,1√
2

,

ε6 =
up1,2 + up2,1 + u,2 + v,1√

2
,

(103)

and because of eqs. (99) and (101), the quantities

v,3 + x3w,2, u,3 + x3w,1, u,2 + v,1 (104)

cannot depend upon x3.
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Then, u,3 and v,3 must be linear in x3, while w,1 is a function of x1

and w,2 of x2. Then, we can put

u(x2, x3) = −1

2
x2

3 (A + D x2) + x3f (x2),

v(x1, x3) = −1

2
x2

3 (B + D x1) + x3g(x1),

w(x1, x2) = A x1 + B x2 + C + D x1x2, A,B,C ,D ∈ R.

(105)

Injecting (105) into (104)3 leads to

−D x2
3 + x3

df (x2)

dx2
+ x3

dg(x1)

dx1
, (106)

a quantity that must be independent of x3, which gives

D = 0, f (x2) = −(ωx2 + γ2), g(x1) = ωx1 + γ1, ω, γ1, γ2 ∈ R.
(107)
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Hence, the displacement field has the expression

u1(x1, x2, x3) = up1 (x1, x2)− 1

2
A x2

3 − ωx2x3 − γ2x3,

u2(x1, x2, x3) = up2 (x1, x2)− 1

2
B x2

3 + ωx1x3 + γ1x3,

u3(x1, x2, x3) = up3 (x1, x2) + x3(A x1 + B x2 + C ).

(108)

Any rigid displacement can be added to u(x1, x2, x3) without
altering the strain and stress fields; we can hence add the
displacement δ(x1, x2, x3) corresponding to an infinitesimal rigid
rotation θ around the axis γ = (γ1, γ2, γ3),

Rγ = I + Γ, (109)

with Γ the axial tensor corresponding to γ:

Γ =

 0 −γ3 γ2

γ3 0 −γ1

−γ2 γ1 0

 ; (110)
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hence

δ(x1, x2, x3) = Rγx− x =


γ2x3 − γ3x2

γ3x1 − γ1x3

γ1x2 − γ2x1

 . (111)

Once (111) added to (108) and the terms depending upon x1 and
x2 incorporated in the upi (x1, x2), we get

u1(x1, x2, x3) = up1 (x1, x2)− 1

2
A x2

3 − ωx2x3,

u2(x1, x2, x3) = up2 (x1, x2)− 1

2
B x2

3 + ωx1x3,

u3(x1, x2, x3) = up3 (x1, x2) + x3(A x1 + B x2 + C ).

(112)

The terms in (112) depending upon x3 account for the difference
between plane stress field or plane displacement field (but not of
plane strain, when the assumption u3 = 0 is also done), and finally
between the Lekhnitskii and the Stroh theories.
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Strain field and compatibility equations
With the components (112), eq. (100) becomes

ε1 = up1,1, ε2 = up2,2, ε3 = A x1 + B x2 + C ,

ε4 =
up3,2 + ωx1√

2
, ε5 =

up3,1 − ωx2√
2

, ε6 =
up1,2 + up2,1√

2
.

(113)

ε3 is linear in x1 and x2 ⇒ the deformation corresponds to a
bending about the line A x1 + B x2 + C = 0.

The deformation determined by ω is a torsion about the axis of x3.

With these εi s the only compatibility equations that are not
identically satisfied are

ε1,22 + ε2,11 =
√

2 ε6,12,

ε4,1 − ε5,2 =
√

2 ω.
(114)

These relations will give the two differential equations to be
satisfied by the stress functions χ and Ψ .
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Differential equations for χ and Ψ

χ and Ψ cannot determine σ3 ⇒ if a solution is looked for in terms
of χ and Ψ , σ3 must be eliminated.

This can be done deducing σ3 from

εi = Sijσj → σ3 =
ε3

S33
− 1

S33

6∑
j=1
j 6=3

S3jσj , (115)

which injected back into the Hooke’s reverse law gives

εi = S ′i1σ1 +S ′i2σ2 +S ′i4σ4 +S ′i5σ5 +S ′i6σ6 +S∗i3ε3, i = 1, 2, 4, 5, 6.
(116)

with

S ′ij = Sij −
Si3Sj3
S33

, S∗i3 =
Si3
S33

, i , j = 1, ..., 6. (117)
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The components S ′ij are called reduced elastic compliances, and
they are exactly equal to the components Σij , also called reduced
compliances.

This is rather surprisingly, because the Σijs arise in a plane strain
problem, quite different from the Lekhnitskii theory, where the only
assumption is a plane field for stress.

Actually, there are important differences between the S ′ijs and the
Σijs: while the S ′ijs are valid for each elastic syngony, the Σijs are
correct only for a material at least monoclinic with x3 = 0 as plane
of symmetry.

Moreover, the S ′ijs are defined for the 3D case, while the Σijs
define only plane components.

Actually, though the S ′ijs are equal to the Σijs, they are deduced in
a completely different way, which explains why in a problem with a
plane stress field, which however is not a plane stress state, there
are reduced compliances and not reduced stiffnesses.
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To remark that, with definition (117),

S ′ij = S ′ji , (118)

and
S ′i3 = S ′3i = 0 ∀i = 1, ..., 6. (119)

We now express the σijs using the stress functions χ and Ψ ,

σ1 = χ,22 − U,

σ2 = χ,11 − U,

σ6 = −
√

2 χ,12,

σ4 = −
√

2 Ψ,1,

σ5 =
√

2 Ψ,2.

(120)
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Substituting these relations into eq. (116) gives

εi = S ′i1(χ22 − U) + S ′i2(χ11 − U)−
√

2S ′i4Ψ,1 +
√

2S ′i5Ψ,2−√
2S ′i6χ,12 + S∗i3ε3, i = 1, 2, 4, 5, 6.

(121)

The derivatives of the εi s can now be calculated and injected into
the compatibility equations (114); remembering the expression of
ε3, eq. (113)3, some standard passages lead to the following result:

∇4
1χ+∇3

1Ψ = C1,

∇3
1χ+∇2

1Ψ = C2,
(122)

where the known terms at the right-hand side C1 and C2 are

C1 = (S ′12 + S ′22)U,11 −
√

2(S ′16 + S ′26)U,12 + (S ′11 + S ′12)U,22,

C2 = −2ω +
√

2
[
S∗34A− S∗35B − (S ′14 + S ′24)U,1 + (S ′15 + S ′25)U,2

]
.

(123)
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The differential operators are

∇2
1 = 2

(
S ′44

∂2

∂x2
1

− 2S ′45

∂2

∂x1∂x2
+ S ′55

∂2

∂x2
2

)
,

∇3
1 =
√

2

[
−S ′24

∂3

∂x3
1

+ (S ′25 +
√

2S ′46)
∂3

∂x2
1∂x2

−

(S ′14 +
√

2S ′56)
∂3

∂x1∂x2
2

+ S ′15

∂3

∂x3
2

]
,

∇4
1 = S ′22

∂4

∂x4
1

− 2
√

2S ′26

∂4

∂x3
1∂x2

+ 2(S ′12 + S ′66)
∂4

∂x2
1∂x

2
2

−

2
√

2S ′16

∂4

∂x1∂x3
2

+ S ′11

∂4

∂x4
2

.

(124)

∇4
1 is not only formally identical to the generalized biharmonic

operator of the plane strain state but, because of the above
mentioned identity of the Sijs and Σijs, they are exactly the same
operator; that is why we have indicated with the same symbol both
of them.
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Equations (122) are a system of non-homogeneous differential
equations for χ and Ψ ; together with the appropriate boundary
conditions, they define a boundary value problem reduced to the
knowledge of the scalar two-dimensional functions χ and Ψ .

The Lekhnitskii theory has hence transformed a 3D problem into a
two-dimensional one, the dependence upon x3 being however
recovered in the above relations for the εi and u.

The equations in (122) can be rearranged for uncoupling χ and Ψ
and for obtaining a homogeneous problem. To this end, let us pose

χ = χh + χp, Ψ = Ψh + Ψp, (125)

h: solutions of the associated homogeneous equations:

∇4
1χ

h +∇3
1Ψ

h = 0, ∇3
1χ

h +∇2
1Ψ

h = 0, (126)

p: particular solution of eq. (122) depending upon the known
terms (123) and usually rather simple to be found.
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Homogeneous equations (126): we uncouple χ and Ψ :

∇2
1(∇4

1χ
h +∇3

1Ψ
h) = 0 −

∇3
1(∇3

1χ
h +∇2

1Ψ
h) = 0 =

(∇2
1∇4

1 −∇3
1∇3

1)χh = 0

(127)

The same can be done for Ψh: applying the operator ∇3
1 to eq.

(126)1 and ∇4
1 to eq. (126)2, then subtracting the first equation

from the second one, the result is exactly the same:

(∇2
1∇4

1 −∇3
1∇3

1)Ψh = 0. (128)

Eqs. (127) and (128) are two uncoupled sixth-order differential
equations for χ and Ψ .
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A final consideration

The mathematical technique for solving such equations is very
peculiar: the above equations are transformed into a sequence of
six first-order equations, solved successively. Boundary conditions
must, of course, be specified too.

All this part, very technical, is left apart here.

In the literature, the problems of plane deformation and of
generalized plane stress are often combined and called the plane
problem of the theory of elasticity.

We can hence remark that the Lekhnitskii theory is a general frame
where generalized plane strain, plane strain and generalized plane
stress are special cases.

Nevertheless, the case of plane stress, as defined before, is not
comprehended in the Lekhnitskii theory.
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The Stroh theory

We will name a Stroh Problem every problem of the elastic
equilibrium of an anisotropic body whose displacement field is
constrained to satisfy uniquely the condition of plane field

u = u(x1, x2). (129)

The same properties are obviously true for ε, and, through the
Hooke’s law, for σ:

ε = ε(x1, x2), σ = σ(x1, x2). (130)

To remark that a consequence of assumption (129) is that ε33 = 0,
but not that σ33 = 0.

We can hence notice that all the fields are plane fields in a Stroh
problem, but none of them is a plane tensor or vector, because not
all the components on x3 vanish.
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The Stroh theory or formalism is the mathematical theory for
obtaining a general formulation of the solution to the Stroh
Problem.

There are several similarities between the Stroh and the Lekhnitskii
theories, but they remain two different approaches, both
mathematically speaking than mechanically speaking (the basic
assumption is different).

The full development of the Stroh formalism is rather complicate
and technical, so it will not be treated here.
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Nomenclature for plane problems

We have seen that there are different cases of plane problems:
plane strain, plane stress, generalized plane stress etc.

Nevertheless, one can imagine to be in a plane world with only 2
dimensions, and state all the equations in this hypothetic world.

Of course, such a situation can represent different practical
situations, like plane strain or plane stress and so on.

In other words, we can continue to work with the classical
equations of elasticity in a plane situation, without necessarily
specifying in which state actually we are.

In such a case, we will continue to use the customary nomenclature
for the Hooke’s law:

{σ} = [C ]{ε},
{ε} = [S ]{σ}.

(131)
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Every time that we will state an equation in a general sense,
without the need for specifying to which state it is referred to, we
will use the above symbols, namely for the stiffness and compliance
tensors.

Whenever the situation is that of plane strain, then we will write

{σ} = [C ]{ε},
{ε} = [Σ]{σ},

(132)

and in case of plane stress or generalized plane stress

{σ} = [Q]{ε},
{ε} = [S ]{σ}.

(133)

In other words, in case of plane strain and stress we will use the
reduced compliance and stiffness tensors respectively, [Σ] and [Q].

In all the cases, we omit, for the sake of simplicity, the superscript
p for indicating the plane case.
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