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Topics of the third lesson

e Plane problems
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The planar case

In a great number of situations the problem can be reduced from a
3D to a planar one, because of its geometry and loading conditions.

This reduction can considerably simplify the problem and also
opens the way to the use of special mathematical techniques, like
for instance complex variables.

Actually, different cases can be considered; to this purpose, it is
worth to make a distinction between
e plane tensor: it is a tensor whose components orthogonal to a
given plane, say the plane x3 = 0, are all null (i.e.
013 = 023 = 033 = 0, €13 = €23 = £33 = 0)
e plane field: it is a tensor function whose components are
scalar functions independent of x3:
J,'J' = U,'J'(Xl,X2),€,'j = 8,‘j(X1,X2), Vi,j = 1,2,3.
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A plane field is, hence, not necessarily a plane tensor, and cases are
possible, depending on the assumptions, where one of the tensors
is not plane nor a plane field, while the others are plane tensors
and/or plane fields.

The possible combinations are different, and the literature is not
always completely clear about this topic.

In the following, an exposition as complete as possible is given,
considering the different approaches and the possible definitions
existing in the literature:

plane strain

plane stress

generalized plane stress
the Lekhnitskii's theory
the Stroh’s theory
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X3= X3

X4

The figure shows the general sketch
e the structure belongs to the plane x3 =0
e basis B = {x1,x2, x3} is the material basis, where the
properties of the material are known (typically, the orthotropic
basis)
e basis, B’ = {x{,x), x5} is a generic basis, rotated
counterclockwise through an angle 6 about the axis x3 = x}
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Rotation of the axes in 2D

The change from basis B = {x1,x} to B’ = {x{, x5}, sketched in
the Figure, is represented by the orthogonal tensor

c s O
U=| —s ¢ 0|, c=cosf, s=sinf, (1)
0 01

which gives the rotation matrix for 2D problems

c? 52 0 0 V2¢s |
s? 2 00 —v/2cs
R] = 0 0 1 0 O 0 2)
0 0 0 ¢ —s 0
0 0 0 s 0
i —V2cs V2cs 0 0 2 — 52 ]

6
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Extracting the plane components of {¢}, i.e. considering in matrix
(2) the relevant components, then

el c? s? V2¢s €1
!/
{e =[Ri{e} =< & ¢ = s? ¢ Vs &
€6 —V2ecs V2 2 —§? €6
and
n _ T
[$'] = [RISIR] —
51’1 4 2\/§c3s 2252 2252 2\/55 S11
Sie —V23s  c* — 3252 V2es(c? — %) V2es(c? — s%) 322 —s* fcs S16
Si» | B V2es(s? — c?) st —2¢%s? V2es(? — s?) S12
Sée 2c2s%2 24/2cs(s? — 2) —4c%s? (2 =522 2y/2cs(c? — %) 2c%s? Se6
52/6 7\/§cs3 3c2s2 — ¢t \/Z:s(s2 — ::2) \@cs(s2 — cz) &t~ 3¢2s2 \fc s So6
52/2 st —2/2¢s3 2c2s? 2c2s? —2v2c%s Soo
4

These are the transformation matrices for £ and [S] in 2D. Similar
results are valid for {c} and [C] (Kelvin's notation)



The Tsai and Pagano parameters

Tsai and Pagano (1968) proposed a transformation of eq. (4),
obtained exclusively using standard trigonometric identities:

Q) [1 cos20  cos40 00 2sin20  sin4d | 5:
Q1) 0 0 —cos46 10 0 —sin46
Q{G . 0 %sin% V2sind40 0 0 v/2cos20 +/2cos4f 53
Q, [ | 1 —cos20 cosa6 00 —2sin20  sin4o ¢
Q% 0 %sin% —/2sin40 0 0 v/2cos20 —+/2cos4d 55
Qs Lo 0  —2cos40 02 0 —2sin40 o
Ur )
(5)

[Q]: reduced stiffness matrix of a plane stress state (see below).

The original transformation, written for the Voigt's notation, is
slightly different and valid only for [Q], while eq. (5) can be
applied to [S] too.



U;: Tsai and Pagano parameters, linear combinations of the
components of the matrix in the original frame:

1

U = §(3011 +2Q12 + 3Q22 + 2Qs6),
1

U = 5(@11 — @),

1
Us = §(Qll —2Q12 + Q22 — 2Q%6),

1
Us = g(Qu +6Q12 + Q22 — 2Q66), (6)
1
Us = g(Qn —2Q12 + Q22+ 2Qep),
1
Us = m(@lﬁ + ),
1
Uz = —=(Q16 — Qo6).

2v2
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In the literature, the U;s are often called invariants, like in the
same title of the original publication, but this is not correct:
U, Us, Us and U7 are frame dependent quantities.

To remark that Tsai and Pagano make use of 7 quantities to
express 6 other functions. As a consequence, the U;s are not all
independent, e.g.

Uy — U
-T2 ")
Th Ujs have not a direct and clear physical meaning, nor they are
immediately linked to the anisotropic properties or to the elastic
symmetries.

Us

Their use is exclusively limited to the design of laminates.
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Recalling some classical results and tools

It is worth now to recall some classical topics in plane elasticity, to
be used in the following.

Airy’s stress function (1862)

Airy noticed that in 2D problems the equilibrium equations of a
body subjected to only surface tractions (i.e. with a null body
vector) indicate that the oy can be regarded as the second-order
partial derivatives of a single scalar function, the Airy’s stress
function

The knowledge of the Airy’s stress function gives the 0,3 that
automatically satisfy the equilibrium equations.

We give here the most general approach to the Airy's stress
function, valid regardless of the type of material and including also
the presence of a body vector (cf. Milne-Thomson).
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Consider a plane system, for which we assume
ojj = 0ij(x1,x2), 023 =031 =0, (8)
which implies that the equilibrium equations reduce to
o8B = ba, o, =1,2. (9)
For such a plane problem, we introduce the complex variable
Z=x1+bo = Z=x1 — iXo (10)

and conversely

12 /73



For the differential operators we have then the following
equivalences

o0, 0 000
Ox1 0z 07’ 0z 0Ox1  Oxo’ (12)
0 .0 .0 0 0 .0
%:15—157 2528—)(1—#/6—)(2.

If (12); is injected into (9) we get

0011 N aail L <8012 B 8012> by,
0z 0z 0z 0z
(13)
doo1 4 doxn . (0o Doz _ by:
9z "oz '\az 8z ) %

multiplying the second equation by —i and adding the result to the
first equation gives
00 0P

E—E :b]_—lb2, (14)
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O =011+ 02, P=0n—o0n+2ioiy, (15)
are the Kolosov's fundamental stress combinations (1909).

Be Og, P a particular solution of (14) corresponding to the action
of the body vector, i.e. such that

TS0 by by (16)

then, the general solution of (14) is

0%y 0%x

The arbitrary real valued function
X = x(x1, %) = x(z,2) (18)

is the Airy’s stress function.
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The solution of the stress problem is hence reduced to the
knowledge of the Airy's function: from egs. (15) and (17) we get

011 = %@ — %(@—i—@) =09 + szzz(,
022—;9—#1(454-45)_082—%5;22(, (19)
where
oty = %@0 - %(@0 + %),
0% = 260+ ;(#0+ Bo). (20)
082 = *%"(@0 — &),

are a particular solution of the equilibrium equations (9)
accounting for the body vector.
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In case of body forces depending upon a potential U, f = VU,

then eq. (19) becomes

O%x
=Xy
011 8X22 )
9%x
=2 _ U 21
022 8X]? 5 ( )
N i ¢
12 aX18X2.

When the body is acted upon uniquely by surface tractions, eq.

(19) becomes simply

82)(
011 = —%,
11 8X22
0%y
= _ 42 22
022 aX]? ) ( )
82X
012 =

16
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It is possible to introduce the The Airy's function without making
use of complex variables:

Theorem
Be fi(x1,x2) and fa(x1, x2) two scalar plane functions such that

o ofh
o e =0 (23)

then a potential function W(xy, x2) exists such that

ov ov

fi=—r—y fo=_——.
! (9X27 2 8x1

(24)
The equilibrium equations of a system subjected to only surface

tractions and where oj; = 0jj(x1, x2) are precisely in the form of
(23):
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o111 + o122 =0,
o211+ 022=0, =
0311 + 0322 =0,

there exist scalar functions y;(x1, x2) such that
Oi1 = —¥i2, 0O0i2=i1.

Because 012 = 091,
P11+ 22 =0,

which once more is in the form of (23), so it exists a scalar
function x(x1, x2) such that

Y1 = —X2, ¥2=X,1-

Then, by (26), we get the (22).

(25)

(26)

(27)

(28)
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Putting ¢3 = —¥, called stress function (cf. Ting, 1996), we get

also
o3=-V¥,1, o031=Vp. (29)

When the stresses are represented through x and ¥ by egs. (22)
and (29), then the equilibrium equations are automatically
satisfied.

To remark that o33 cannot be determined by this way.

We will see further the use of functions y and V.
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Plane and antiplane states and tensors

The reduction from a 3D to a 2D problem can be done in 2
different cases:

e plane strain
e plane stress
There are substantial differences between the 2 cases, but a

common algebraic basis can be given for both of them.

We rewrite the Hooke's law like (p stands for plane and a for

antiplane)
{ {oP} = [C1]{e"} + [C2]{e?},
: (30)
{0} =[C2] {P} +[C3]{e%},
and its inverse like
{ {eP} = [S1]{o”} + [S2]{0°},
a T a (31)
{e?} =[82] {o”} +[S3]{0°}.
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In egs. (30) and (31) it is:

o1 03
{oP} =3 o2 ¢» {107t =4 o4 ¢> (32)
06 o
€1 €3
{ePr=9q e ¢, {€%9=19 & ¢> (33)
€6 €5
[ Cn G G | Gz Ga Gs
[C1] = Con Co |+ [C2]=| Gz Cu G |
sym G C C G
- Y 66 - 36 46 56 (34)
Gz G s
[C3] = C44 C45 ’
| sym Css |

21/73



[ S S Sis | S13 S Sis
[$1] = S S | [521=1 S Su S |,
:Sym 566: S36 Sae  Sse (35)
S33 S3a S35
[S3] = S44 Sus
| sym Ss5

These results are the common algebraic basis for developing,
separately but dually, the two cases of plane strain and plane stress.

We will call, in short, plane tensors all those with the superscript p
and antiplane all those with the superscript a, i.e. it is antiplane
any component out of the plane x3 = 0.



Plane strain

We define plane strain a state for which the displacement vector
u = (u1, up, u3) is such that

uz3 =0, Uy = Ug(x1,x2), a=1,2. (36)

Through the strain-displacement relations eq. (36) gives

E3:U373:0’ 84:w:0, 55:w:0 —
ey =1{0},  {"} ={e"ba, )},
(37)

which justifies the name plane strain: the antiplane strain {¢?} is
null and the plane strain {P} is a plane field.
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From egs. (30) and (31) we get hence, for the in plane tensors,
{oP} = [C1{eP}, {"} = [XN{o"}, (38)
while for the antiplane tensors it is

{0%} =[C2] " {eP} = —[S3]7'[S2] " {0P} = [C2] " [Z {0},
{e?} = {0},

with

(39)

[£] = [C17* = [51] - [S2][S3] 7 [52] ", (40)
the reduced compliance matrix.

The stiffness of the in-plane part, [C1], does not change with
respect to the 3D case, while the in-plane compliance [X] # [S1].

Also, unlike {7}, {02} # {0}: the antiplane stress is not null in
plane strain
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To detail the components of [X] for a triclinic material is
complicate.

Monoclinic material, with x3 = 0 plane of symmetry:

Si3Siz ..
Sy=S— 22 i j=1,2,6, (41)
S33
and
03 C13e1 + Cozen + Cape6
{o%} =3 o4 ¢ = 0 : (42)
05 0

Through eq. (39) we get also

51301 + 52302 + 53606
S33

03 —

(43)

— The transverse shear components o4 and o5 vanish in plane
strain. This is not the case for o3.
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Orthotropic material with {x1, x2, x3} the orthotropic frame:
because Cig = S;g =0Vi=1,2,3,

52
Syp — 23 512_513523 0

S33 3933
[X] = S2—-2 0 |,
sym 566

_ S1301 + Sp302

03 = Ci3e1 + (362 = S
33

Isotropic body:

E
1] = 2 o |,
14
sym E
vE

o3 = (e1 + €2) = v(o1 + 02).

1-2v)(1+v)

(44)

(45)

(46)

(47)

26
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Three remarks:

1. condition (36) implies not only that {eP} is a plane field, eq.
(37), but also, through the Hooke's law, that {c} is a plane
field too:

oi =oi(x1,x), Yi=1,...,6; (48)

2. plane strain is typical of infinitely long cylindrical bodies
subjected to loadings that do not depend upon x3, the
longitudinal axis (e.g. a pipe with internal or/and external
pressure, a rail under its own weight etc.). In such cases, the
assumption (36) is plausible.

3. generally speaking o3(x1,x2) # 0. Hence, a plane strain is
possible, for finite cylinders, only when appropriate actions are
applied at the bases of the cylinder, in order to ensure the
existence of o3(x1,x2) # 0 and that u3 = 0.
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The concept of plane strain can get different definitions in the
literature; the definition given here, eq. (36), is the same one given
by Love, Muskhelishvili and by Rand & Rovenski.

A general and rigorous definition, valid not only for infinitely long
cylinders, is given by Milne-Thomson:

a state of plane deformation is said to exist if the
following conditions are satisfied: (i) one of the principal
directions of deformation is the same at every point of
the material; (ii) apart from a rigid body movement of
the material as a whole, particles which occupy planes
perpendicular to the fixed principal direction prior to the
deformation continue to occupy the same planes after the
deformation.
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To remark the use of the term plane deformation and not of plane
strain.

Of course, the above definition implies that there is no warping of
the material planes orthogonal to the invariable principal direction
and that

u3 =0, e3=0, (49)

but not the second assumption of (36), uy = ua(x1,x2), @ =1,2.

Milne-Thomson shows that this is a consequence of the definition
of plane strain and of the strain-displacement relation in non-linear
elasticity, i.e. taking the Green-Lagrange tensor as measure of
deformation

1 1
eij = 5(Uij + Ui+ ueit) = e3=usz+ (Ui + U35+ u33),
(50)
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Through eq. (49), this gives

u%3 + u§73 =0 = n3z=w3=0 = uy,= ua(x1,x2), a=1,2.
(51)
This result along with (49); give
_ 15 2
€1 =u11+ 2('J1,1 + u31),
L o 2
€2 = 22 + (U1 + U33),
1 2( 1,2 272) (52)
g6 = —=(U12 + o1 + U1 1U12 + Up 1l o),

V2

€3 =¢e4 =¢c5 = 0.
Of course, the results of eq. (52) are valid for € too in the
framework of the linearized theory.

By consequence, {o} = {o(x1,x2)} is a plane field too, so giving
what Milne-Thomson calls a plane system
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Ting introduces the argument as antiplane deformations and then
he develops, substantially, the theory described above and later on.
He introduces another category of plane deformation problems,
those where the only basic assumption is

u; = U,‘(Xl,XQ) Vi= ]., 2, 3. (53)

There is a substantial difference between this plane case and the
one developed above or defined by Milne-Thomson, because now
uz # 0. Ting calls this type of plane deformation the Stroh
formalism

Green & Zerna introduce the concept of plane strain as a system
where the displacement and strain components are independent
from x3, so substantially the same definition given by Ting for the
Stroh formalism, and develop all the theory in the framework of
nonlinear elasticity, which is far beyond our scope.
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Plane stress

An elastic body is in a plane stress state when the antiplane stress
{07} is null and the plane stress {oP} is a plane function:

{07} ={0} — o3=04=05=0,

{oP} ={oP(x1,x)}, = oi=o0i(x1,x) Vi=1,2,6. (54)

As a consequence of (54) and of the equation of motion also the
body vector is a plane function: b = b(xy, x2).

The case of plane stress is completely analogous to the previous
one of plane strain: because of the symmetry of relations (30) and
(31), the developments for plane stress can be obtained repeating
verbatim those for plane strain, simply replacing the strains with
stresses, the compliances with stiffnesses:

{oP} = [QN{e"},

[} = [S1]{o"}. (55)
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and for the antiplane tensors

{Ua} = 07

6
{e?} =[52]" {o"} = —[C3]7H[C2] " {eP} = [S2]" [QN{<P}, (%0)

with

[Q] =[s1]* = [C1] - [C2)[c3]*[C2], (57)
the reduced stiffness matrix.
In a dual manner with respect to the results of plane strain, in case
of plane stress the compliance of the in-plane part, [S1], does not

change with respect to the 3D case, while the in-plane stiffness

changes: [Q] # [C1].

Also, unlike {7}, {€?} # {0}: the antiplane strain is not null in
plane stress, generally speaking.
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For a monoclinic material we obtain

Qj = Cj— C"3Cf'3, i,j=1,26, (58)
C33
and
€3 S1301 + 52302 + S3606
{2 =4q e ¢ = 0 . (59)
91 0

Through eq. (56) we get also

~ Gizer + Gozea + Gaecs

Ca (60)

£3 =

So, in the case of monoclinic material with x3 = 0 plane of
symmetry, the transverse shear deformations €4 and €5 vanish in
plane stress, but not 3.
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For an orthotropic material with {x1, x2, x3} the orthotropic frame
we get:

2
C15C
Ci1 — C;i Co — 183;3 0

[Q] = Cn—& 0 |- (61)

33
sym C66

Cize1 + Cozen

€3 = S1301 + S2302 = — c (62)
33
Using the fact that [Q] = [S1] 7!, we get also
S» - Si2 0
S1152—52, S51152-52,
= _ Su .
[Q] 511522_5122 0 ! (63)
sym =
this result gives a bound on the Young's moduli: because
1 Vijj Vii Vii .
5ii=E_, 5ji=—ﬁ, EjZEJJ?Qii>Ei7 i=12 (64)
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Finally, for an isotropic body we get

_E vE 0
1—12 1—12
[Q] = £ 0 |, (65)
sym e
14 1%
E3——E(O'l—i-dz)——l_y(el-i-&‘z). (66)

A remark about the displacement vector u = (u1, up, u3): generally
speaking, it is not a plane function:

u = u(xy, x2, x3), (67)

i.e., the problem is not plane for the displacements. This is a
fundamental difference with plane strain; in fact, for plane strain,
u, € and o are all plane fields.

36

73



To end this section, some commentary about the notion of plane
stress in the literature. The definition given here, eq. (54) is rather
classical, and it is, for instance, that given by Love or by Rand &
Rovenski.

Milne-Thomson gives perhaps the most general definition:

a plane system is one for which there exists a plane such
that the stress tensor is the same at all material points of
any normal to this plane as at the material point in which
that normal meets the plane.

To remark the use of the term plane system and not of plane stress
by Milne -Thomson. Also, his definition is not completely identical
to that given in (54), because it is not required that condition
(54)1 be satisfied.
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Nevertheless, the same author immediately after considers only
plane systems with o4 = 05 = 0. This implies that, for the third
equation of motion, the body vector b is planar: b3 = 0. So, all
the actions are parallel to the plane of the system.

Lekhnitskii analyzes exactly the general case of plane system as
defined by Milne-Thomson and Ting ting calls explicitly such a
system the Lekhnitskii Formalism.

The state of plane stress is typical of thin, flat bodies, like plates or
slabs. A plate is thin when its thickness is much smaller than its
typical in-plane dimension.

If the plate is submitted to only in-plane loadings, then, because of
the small thickness of the plate and assuming a continuous
distribution of the ojjs through the plate’s thickness, assumptions
(54) are a good approximation of reality.
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Generalized plane stress

The concept of generalized plane stress was first introduced by
Filon (1903) and successively developed by Love, Muskhelishvili
and by Lekhnitskii, as a special case of his plane theory.

Let us consider a thin plate whose thickness is 2t, acted upon only
by loadings parallel to the mid-plane x3 = 0 and with the two
surfaces unloaded:

o3 =04 =05 =0 at x3 = *t. (68)

For a triclinic material, the plane stress {o”} will generate also
antiplane strains, {7} # {0}, which implies that u3(x1, x2,0) # 0:
the mid-plane of the plate will warp under in-plane loadings.

To exclude this possibility, we will consider only anisotropic
materials with at least

Ca=Cs=Cu=Cs=Cu=0Cs5=0Ge=Ce=0 (69)
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The most general materials satisfying such requirements, are those
of the monoclinic syngony with x3 = 0 as plane of symmetry.

We introduce the average displacements

1 +t

U= — uj dx3 Vi=1,2,3, (70)

and
; t) — uj —t
[u] = ui(x1, x2, t) 2U/(X1,X27 )' (71)
t
We make the further assumption that all the applied forces are
symmetrically distributed with respect to the mid-plane of the

plate, so that the stresses are symmetric with respect to this plane.

As a consequence, also the displacements will be symmetric and,
by (70) and (71), it will be

[t1] =[] =0, T3=0 (72)
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which gives
+t uij Vij#3,

ujda =% & if i=j=3, (73)
—t

0 otherwise.

1
2t

This result means that the average displacement is a plane vector
and also a plane field:
U3 =0, Uy = Uu(x1,x), a=1,2, (74)
and that for the average strain it is
G=8=0, 540, {8 ={Ela. )} (75)
i.e. the strain tensor in not plane but it is a plane field.

As a consequence, considering the requirements (69), integrating
the Hooke's law over the thickness gives

o; = Cne1 + Cipér + Cizes + Cigte. (76)
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Applying the third equilibrium equation
051+ 042+ \603,3 =0,
at the plate’s surfaces, x3 = £t, for the (68) we get
033 =0.
The consequence of (68) and of the last result is
o3~0 Vx3 € [-t,t] = o3=0.

Then, writing the (76) for o33 gives the condition

o~ 1 = = e
B=-— (C3181 + G282 + C3686)
33

that injected back into (76) gives
{o} = [C]{e},

with [6] the reduced elastic stiffness matrix:

(77)

(78)
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CizCjs3

Gz
The above components define the reduced elastic stiffness matrix
exactly as [Q], see eq. (58).

Cj= Gy —

(82)

Nevertheless, the difference with plane stress is that in generalized
plane stress all the equations are satisfied on the average.

If t is very small compared to the other relevant dimensions of the
plate then generalized plane stress is a good approximation.

To notice that, through egs. (69) and (75) it is
G4 =05 =0. (83)

Let us now integrate the equilibrium equations on the thickness of
the plate; then, eq. (68) gives

V2611 + 562 = 0,
G614+ V2022 =0, (84)

6'\571 + 5'\472 =0.
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Mechanical consistency of plane states

We have introduced plane strain and plane stress; we ponder now
their mechanical consistency, i.e. if such states are physically
possible.

Plane strain: injecting the Hooke's law in the equilibrium
equations of a body submitted only to loadings on its boundary,
these reduce to

Eir11€11,1 + 2Ej112€12,1 + Ej120622,1+ vi—123 (35
Ein11€112 + 2Ej212€122 + Ej2206222 = 0

The coefficients of the third equation are

Ez111 = Gis, E3121 = E3z112 = Gse, E3212 = E3201 = Cae, (86)
E3200 = Co4, E3211 = Cia, E3120 = Cos.

All of these coefficients are null for a monoclinic material with

x3 = 0 as plane of symmetry.
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Let us now consider the antiplane deformations

up = up = 0, uz = U3(X1,X2) — uz3 = €33 = 07 {Ep} = {0}
(87)
Now the three equations of equilibrium reduce to

Ei113e13,1+Ei123€231+ Ei213€13 2+ Ejo23e2z2 = 0Vi = 1,2,3. (88)

The coefficients of the two first equations (88) are exactly the (86).

Hence, a monoclinic body satisfies automatically, for each applied
loading on the boundary, the third plane equilibrium equation and
the two first antiplane equations: plane and antiplane deformations
are uncoupled.

The monoclinic condition is not the minimal requirement: the true
necessary conditions are the (86) to be null, while for a monoclinic
material, required for generalized plane stress, it is also

Gy =Cs=0
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This result is obviously valid also for the other elastic syngonies
that satisfy the same conditions, namely for the orthotropic,
tetragonal, axially-symmetric, cubic and isotropic ones.

For all such materials, the plane strain state is a possible situation
and it is an exact theory. To remark that in this circumstance, it is
also 04 = 05 = 0.

For a triclinic or trigonal body, or for any other syngony not
correctly oriented (i.e. for which x3 = 0 is not one of the symmetry
planes), a plane strain deformation or an antiplane one cannot
exist, generally speaking: also in the case where the three
components of displacement u; depend upon only x; and xp, all of
them are coupled, so that u3 does not vanish, in general.

Such a state is called a generalized plane strain: u3 # 0, but
€3 = 0 because nothing is function of x3, so that uz 3 = 0.
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The compatibility equations give an equation for the Airy's stress
function (22).

In fact, with the assumptions (37) all the compatibility equations
are automatically satisfied but the first

V2612 = €120 + €211 (89)

Using eq. (38)2 and expressing the stress components by the (22),
remembering that o6 = /2012, we get the following homogenized
biharmonic equation for the Airy's stress function x:

Viy =0, (90)

where

o* o*
Vi= Ezza 2\f226 +2(X12 + Yes)

X3 0%, Ox20x2

V2 o4 ot (91)
2V2XY Xii—%
165 93 Dx1 03 + 21 x4

is the generalized biharmonic differential operator.
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Changing of material syngony or of plane state, other operators
can be introduced; for instance, it can be easily checked that for
an orthotropic material, X1 = X% = 0, so that V‘I‘ has a simpler
form, while for an isotropic material we get V4§ = 1——;2v4, where
V* is the customary double laplacian.

Plane stress: if the Airy’s function is used in the first compatibility
equation and proceeding like in the previous case, but now with the
strain-stress relation (55)2, we get the biharmonic equation for x

Vix =0, (92)
with now
\/» 4 84
Vi=5 —2v2S +2(S Se6) ———5 —
2=50-> 8 % 53305 +2(S12 + Ses) 202

A . (93)

2V/25 +S g

16 o3 3 118x§‘

the generalized biharmonic operator for the present case.
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Formally, V4 is identical to V4, but the components of the
compliance tensor [S] are to be used in place of those of the
reduced compliance [X].

The other compatibility equations, for a strain tensor that is a
plane field but not a plane tensor, because generally speaking in
plane stress {2} # {0}, are

€311 =0, €312 =0, €320 =0, €411 = €512, €412 = €522. (94)

Also considering materials that are at least monoclinic, for which
€4 = €5 = 0, so that the two last equations are automatically
satisfied, the first three equations are left unsatisfied, unless €3 is a
linear function of xq, xo:

83(X1,X2) = co+ c1x1 + coxo. (95)

In all the other cases, the plane stress analysis is not exact, and
can be considered as accurate only in the limit of thin plates acted
upon by surface tractions parallel to the mid-plane of the plate.
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Comparison of plane states
Plane strain:

the displacement is a plane vector and also a plane field:

u3 =0, Uy = us(x1, %), =1,2;

the strain tensor is plane and also a plane field:

{e} ={e(a, %)}, {7} = {0}

the stress tensor is not plane but it is a plane field:

{o} = {o(x1,x2)}; for a material with the moduli (86) null, it is
also 04 = 05 =0, but 03 #0;

the equilibrium equations in case of null body vector, for a material
with the moduli (86) null, reduce to 0 ; =0 j=1,2,V¥i=1,2,3;
the third equation corresponds to the antiplane state, uncoupled
from the plane one;

the Hooke's law does not change with respect to the 3D case:
{o} = [Cl{e"}:
the inverse Hooke's law becomes: {eP} = [X]{o”}, with [X] the

reduced compliance matrix whose components are given by eq. (41)
for a material at least monoclinic;

the theory of plane strain is exact.
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Plane stress

the displacement is not a plane vector nor a plane field:

ui = uj(x1,x2,x3), Vi =1,2,3;

the strain tensor is not plane but it is a plane field:

{e} = {e(x1,x2)}; for a material at least monoclinic, it is also
g4 =5 =0, but 3 #0;

the stress tensor is plane and also a plane field:

{o} ={0P(x1, %)}

the equilibrium equations for a null body vector reduce to
ojjj =0 i,j=1,2, regardless of the material;

the Hooke's law becomes: {oP} = [Q]{eP}, with [Q] the
reduced stiffness matrix whose components for a material at
least monoclinic are given by eq. (58);

the inverse Hooke's law does not change with respect to the
3D case: {e} = [S{oP};

the theory of plane stress is not exact.
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Generalized plane stress

all the relations are given on the average, i.e. as average
values on the thickness of the plate, not locally;

the theory is valid for thin plates of a material at least
monoclinic, with o3 = 04 = 05 = 0 on the plate’s surfaces
and submitted uniquely to loadings parallel to the plate's
mid-plane;

the average displacement is a plane vector and also a plane
field: U3 =0, Uy = Ua(x1,%), @ =1,2;

the average strain tensor is not plane, because €3 = &5 = 0,
but €3 # 0; nevertheless, it is a plane field: {€} = {&(x1, x2)};
the average stress tensor is not plane but it is a plane field:
{o} ={o7(x1, %)}

the equilibrium equations reduce to
oijj=0j=12Vi=1,23;



e the average Hooke's law becomes: {7} = [CI{E}, with
[C] = [Q] the reduced stiffness matrix whose components are
given by eq. (58);

e the theory of generalized plane stress is exact, on the average,
only if o3 is exactly zero everywhere in the plate.

It appears hence that plane strain and generalized plane stress are
formally identical, provided that the stiffness matrix of plane strain
is replaced by the reduced stiffness matrix for generalized plane
stress, and of course considering that in generalized plane stress all
the relations are valid on the average.

Nevertheless, some differences remain, for instance o3 # 0 and
€3 = 0 in plane strain, while it is assumed that 53 =0 and e3 # 0
in generalized plane stress.

The case of plane stress is not formally identical to plane strain nor
to generalized plane stress because the displacement vector is not
plane nor a plane field, besides the fact that 3 # 0 and o3 = 0.
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The Lekhnitskii theory

We will name a Lekhnitskii Problem every problem of the elastic
equilibrium of an anisotropic body whose stress field is constrained
to satisfy uniquely the condition of plane field:

o = o(x1,x2), (96)

hence, generally speaking, with {o?} # {0}, i.e. the stress is not
necessarily a plane tensor.

The same properties, by the reverse Hooke's law, are true for the
strain too, but not for the displacement:

g = €(X1,X2), u—= U(X1,X2,X3). (97)
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The Lekhnitskii theory or formalism is the mathematical theory for
obtaining a general formulation of the solution to the Lekhnitskii
Problem.

It is based upon the use of the stress functions x and ¥. We will
see that the Lekhnitskii theory comprehends, as special cases:

e plane deformation

e generalized plane strain

e generalized plane stress
We follow here the original approach of Lekhnitskii, considering the
general case of an anisotropic body belonging to any possible

elastic syngony, submitted to surface tractions on the boundaries
and to volume forces depending upon a potential U,

f=vVU. (98)
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The decomposition of the displacement field

The displacement vector u(xi, x2, x3) is decomposed into a plane
vector field?

uf = uP(x1, x2) (99)

and a field complementary to the plane one, depending also upon
x3. This can be done in the following way: in the Kelvin's
notation, it is

€1 =U11, €2 =U22, &3 = U33,
3+ u3p w3tz _ump+uwy  (100)

Eq = , €5 = ————, £ =
' V2 ° V2 ° V2

Because the stress is a plane field, for the Hooke's law it is also
Ej :6,'(X1,X2) Vi = 1,...,6; (101)

hence in eq. (100) the right-hand sides are independent of x3.

'Here the symbol p denotes only a plane field, not a plane vector.
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The most general expression for the components of u(xi, x2, x3) is

ur(x1, x2, x3) = uf (x1,x2) + u(xz, x3),
ua(x1, x2,x3) = ub(x1,x2) + v(x1, x3), (102)

uz(x1, x2, x3) = g (x1,x2) + x3w(x1, x2).

Injecting eq. (102) into eq. (100)456 gives

Ui, + V3 +x3wp uf )+ Uz +x3wa
g4 = , 5= ,
V2 V2
b P (103)
Upp Uy +uz2+vy
e = ,
V2
and because of eqgs. (99) and (101), the quantities
v3+Xxawpz, U3+ X3wi, U2+ V3 (104)

cannot depend upon xs.



Then, u3 and v;3 must be linear in x3, while w is a function of x;
and wy of xo. Then, we can put

1
u(xe,x3) = _§X§(A + D x2) + x3f(x2),

1
v(x1,x3) = —§X32(B + D x1) + x3g(x1), (105)
w(xi,xx) =Ax1+Bxx+C+D xix2, AB,C,DeR.
Injecting (105) into (104)3 leads to
df d,
—D X2 +x3 (2) + x3 g(x1) (106)

dX2 Cle ’

a quantity that must be independent of x3, which gives

D=0, f(x)=—(wxx+7v2), gx1)=wx1+7, w,7,7€R.
(107)
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Hence, the displacement field has the expression

ur(x1, X2, X3) = Uf(Xl,Xz) - EA X§ — WX2X3 — 72X3,

1
up(x1, X2, x3) = Uy (x1, Xx2) — EB X3 + wx1x3 + Y13, (108)

uz(x1, x2, x3) = Ué)(X]_,XQ) + x3(A x1 + B x2 + C).

Any rigid displacement can be added to u(xy, x2, x3) without
altering the strain and stress fields; we can hence add the
displacement d(xy, x2, x3) corresponding to an infinitesimal rigid
rotation 6 around the axis v = (71, 72,73),

R,=1+T, (109)

with T the axial tensor corresponding to ~:

0 -3
-2 M 0
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hence

V2X3 — Y3X2
(5(X]_,X2,X3) = R,YX—X: Y3X1 — Y1X3 . (111)
Y1X2 — Y2X1

Once (111) added to (108) and the terms depending upon x; and
x> incorporated in the u?(x1, x2), we get

(112)

The terms in (112) depending upon x3 account for the difference
between plane stress field or plane displacement field (but not of
plane strain, when the assumption u3 = 0 is also done), and finally
between the Lekhnitskii and the Stroh theories.

60 /73



Strain field and compatibility equations
With the components (112), eq. (100) becomes

slzuf’l, Ezzug’z, e3=Ax1+ B x4+ C,

76_778_
V2 ° V2 ° V2

e3 is linear in x; and x» = the deformation corresponds to a
bending about the line A x; + B xo + C = 0.

_ u;z + wxy u;l — WXy uf’2 + ”5,1 (113)
4= ——— —s o

The deformation determined by w is a torsion about the axis of x3.

With these ¢;s the only compatibility equations that are not
identically satisfied are

e100 + 211 = V2 €612,

(114)
€41 — €52 = V2 w.

These relations will give the two differential equations to be
satisfied by the stress functions y and V.
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Differential equations for x and ¥

x and ¥ cannot determine o3 = if a solution is looked for in terms
of x and ¥, o3 must be eliminated.

This can be done deducing o3 from

1
5,-:5,-jaj — 0'32673—7253_,'07, (115)

which injected back into the Hooke's reverse law gives

Eji = 5’{10']_ + 5,{20'2 + 5,{40'4 + 5;50'5 + 51{60'6 + 57353, I = 1, 27 4, 5, 6
(116)
with
Si3Si3 o Sia

5;1.:5,.1._5733, Sh=go =16 (117)



The components Sfj are called reduced elastic compliances, and
they are exactly equal to the components X, also called reduced
compliances.

This is rather surprisingly, because the X;s arise in a plane strain
problem, quite different from the Lekhnitskii theory, where the only
assumption is a plane field for stress.

Actually, there are important differences between the S,fjs and the
Xijs: while the Sfjs are valid for each elastic syngony, the Xj;s are
correct only for a material at least monoclinic with x3 = 0 as plane
of symmetry.

Moreover, the Sfjs are defined for the 3D case, while the Xjs
define only plane components.

Actually, though the Slfjs are equal to the Xjs, they are deduced in
a completely different way, which explains why in a problem with a
plane stress field, which however is not a plane stress state, there
are reduced compliances and not reduced stiffnesses.
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To remark that, with definition (117),

Si = S, (118)
and
5=S5;=0 Vi=1,..,6. (119)

We now express the oj;s using the stress functions x and ¥,

o1=x22—U,

o2 =x11— U,

06 = —V2 X 12, (120)
o4 = -2 v,

o5 = V2 s
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Substituting these relations into eq. (116) gives

gi = Sh(x22 = U) + Sh(xa1 — U) — V25,01 + V2550 ,—
\[25:{6X712 + Sizes, i=1,2,4,5,6.
(121)

The derivatives of the ;s can now be calculated and injected into
the compatibility equations (114); remembering the expression of
e3, eq. (113)3, some standard passages lead to the following result:

Vix+ Viv = ¢,

122
Vix + VU = G, (122)

where the known terms at the right-hand side C; and G, are

G = (S1p+ S»)U11 — \/5(516 + S36)U12 + (511 + S12) U2,

Gy = 2w+ V2 [S34A — S35B — (Si4 + Sha) U1 + (Si5 + Shs)Ua] -

(123)
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The differential operators are

, 82 82 82

vi=2 (5448 25453 0% + 555 02 )

2=V2|-5] s She 4+ /25, »
Vi= - 24ﬁ+( 25 + 46)@‘
/ , 0 oM

(S14 + \@556)a 0 + 5158 ] (124)
o* o* ot

Vi=Sh7 ox8 2f526a 0% +2(51, + Sée)m—
"

2V2S] s ——— a0 511374

V1 is not only formally identical to the generalized biharmonic
operator of the plane strain state but, because of the above
mentioned identity of the Sjs and Xjs, they are exactly the same
operator; that is why we have indicated with the same symbol both
of them.
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Equations (122) are a system of non-homogeneous differential
equations for x and ¥; together with the appropriate boundary
conditions, they define a boundary value problem reduced to the
knowledge of the scalar two-dimensional functions y and V.

The Lekhnitskii theory has hence transformed a 3D problem into a
two-dimensional one, the dependence upon x3 being however
recovered in the above relations for the ¢; and u.

The equations in (122) can be rearranged for uncoupling x and ¥
and for obtaining a homogeneous problem. To this end, let us pose

X=x"+x°, w=v't+vP (125)
h: solutions of the associated homogeneous equations:
ViX"+ Viwh =0, Vix"+Vigh=o, (126)

p: particular solution of eq. (122) depending upon the known
terms (123) and usually rather simple to be found.
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Homogeneous equations (126): we uncouple x and ¥:
VAV 4 Vi) =0 -
Vi(Vixt + Ve =0 = (27
(ViVi-Vivix" =0

The same can be done for &": applying the operator V:'f to eq.
(126)1 and V1 to eq. (126)y, then subtracting the first equation
from the second one, the result is exactly the same:

(V2Vi - Viv3wh =o. (128)

Eqgs. (127) and (128) are two uncoupled sixth-order differential
equations for x and V.
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A final consideration

The mathematical technique for solving such equations is very
peculiar: the above equations are transformed into a sequence of
six first-order equations, solved successively. Boundary conditions
must, of course, be specified too.

All this part, very technical, is left apart here.

In the literature, the problems of plane deformation and of
generalized plane stress are often combined and called the plane
problem of the theory of elasticity.

We can hence remark that the Lekhnitskii theory is a general frame
where generalized plane strain, plane strain and generalized plane
stress are special cases.

Nevertheless, the case of plane stress, as defined before, is not
comprehended in the Lekhnitskii theory.
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The Stroh theory

We will name a Stroh Problem every problem of the elastic
equilibrium of an anisotropic body whose displacement field is
constrained to satisfy uniquely the condition of plane field

u = u(xy,x). (129)

The same properties are obviously true for €, and, through the
Hooke's law, for o

e =¢e(x1,x), o=o0o(x1,x). (130)

To remark that a consequence of assumption (129) is that £33 = 0,
but not that o33 = 0.

We can hence notice that all the fields are plane fields in a Stroh
problem, but none of them is a plane tensor or vector, because not
all the components on x3 vanish.
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The Stroh theory or formalism is the mathematical theory for
obtaining a general formulation of the solution to the Stroh
Problem.

There are several similarities between the Stroh and the Lekhnitskii
theories, but they remain two different approaches, both
mathematically speaking than mechanically speaking (the basic
assumption is different).

The full development of the Stroh formalism is rather complicate
and technical, so it will not be treated here.
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Nomenclature for plane problems

We have seen that there are different cases of plane problems:
plane strain, plane stress, generalized plane stress etc.

Nevertheless, one can imagine to be in a plane world with only 2
dimensions, and state all the equations in this hypothetic world.

Of course, such a situation can represent different practical
situations, like plane strain or plane stress and so on.

In other words, we can continue to work with the classical
equations of elasticity in a plane situation, without necessarily
specifying in which state actually we are.

In such a case, we will continue to use the customary nomenclature
for the Hooke's law:

{o} = [Clel,

e} = [S{o). (131)
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Every time that we will state an equation in a general sense,
without the need for specifying to which state it is referred to, we
will use the above symbols, namely for the stiffness and compliance
tensors.

Whenever the situation is that of plane strain, then we will write

{o} =[Cl{e},

(132)
{e} = [2{o},
and in case of plane stress or generalized plane stress
= g s
{0} = [QH<} 133

{e} = [SHo}

In other words, in case of plane strain and stress we will use the
reduced compliance and stiffness tensors respectively, [X] and [Q)].

In all the cases, we omit, for the sake of simplicity, the superscript
p for indicating the plane case.
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