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Topics of the second lesson

• Anisotropic elasticity - Part 2

2 / 100



Reduction of the Eijkl by elastic symmetries

We consider now the effects of elastic symmetries on tensor E; we
will see that, depending upon the symmetry, some components
Eijkl vanish while some other can become functions of other
components.

In the end, elastic symmetries reduce the number of the
independent Cartesian components of E.

It is worth to work on the Cij rather than on the Eijkl because
simpler.

Before going on, we recall the equations that are needed in the
following:

• invariance of the strain energy

{ε}>[C ]{ε} = ([R]{ε})> [C ][R]{ε} ∀{ε} (1)
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• orthogonal tensor describing a symmetry with respect to a
plane whose normal is n= (n1, n2, n3):

U = I− 2n⊗ n =

 1− 2n2
1 −2n1n2 −2n1n3

1− 2n2
2 −2n2n3

sym 1− 2n2
3

 (2)

• rotation matrix corresponding, in the Kelvin’s notation, to U:

[R] =


U2

11 U2
12 U2

13

√
2U12U13

√
2U13U11

√
2U11U12

U2
21 U2

22 U2
23

√
2U22U23

√
2U23U21

√
2U21U22

U2
31 U2

32 U2
33

√
2U32U33

√
2U33U31

√
2U31U32√

2U21U31
√

2U22U32
√

2U23U33 U23U32 + U22U33 U33U21 + U31U23 U31U22 + U32U21√
2U31U11

√
2U32U12

√
2U33U13 U32U13 + U33U12 U31U13 + U33U11 U31U12 + U32U11√

2U11U21
√

2U12U22
√

2U13U23 U12U23 + U13U22 U11U23 + U13U21 U11U22 + U12U21


(3)
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Triclinic bodies

A triclinic body has no material symmetries, so eq. (1) cannot be
written → it is not possible to reduce the number of independent
elastic components, that remains fixed to 21:

[C ] =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66


. (4)
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Monoclinic bodies

The only symmetry of a monoclinic body is a reflection in a plane.

Without loss in generality, we can suppose to be x3 = 0 the
symmetry plane ⇒ n = (0, 0, 1).

In such a case it is, see eqs. (2) and (3),

U =

 1 0 0

0 1 0

0 0 −1

⇒ [R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


, (5)

that applied to eq. (1) gives the condition
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C14ε1ε4 + C24ε2ε4 + C34ε3ε4 + C15ε1ε5+

C25ε2ε5 + C35ε3ε5 + C46ε4ε6 + C56ε5ε6 = 0,
∀ε ⇐⇒ (6)

C14 = C24 = C34 = C15 = C25 = C35 = C46 = C56 = 0. (7)

Hence, a monoclinic body depends upon only 13 distinct elastic
moduli:

[C ] =



C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0

sym C55 0

C66


. (8)

7 / 100



Orthotropic bodies

Let us now add another plane of symmetry orthogonal to the
previous one, say the plane x2 = 0 ⇒ n = (0, 1, 0).

With the same procedure, we get successively:

U =

 1 0 0

0 −1 0

0 0 1

⇒ [R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


(9)
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(C14ε1 + C24ε2 + C34ε3 + C45ε5)ε4+

(C16ε1 + C26ε2 + C36ε3 + C56ε5)ε6 = 0 ∀ε ⇐⇒
C14 = C24 = C34 = C45 = C16 = C26 = C36 = C56 = 0.

(10)

So, the existence of the second plane of symmetry has added the
four supplementary conditions

C16 = C26 = C36 = C45 = 0 (11)

to the previous eight ones, reducing hence to only 9 the number of
distinct elastic moduli.

Let us now suppose the existence of a third plane of symmetry,
orthogonal to the previous ones, the plane
x1 = 0 ⇒ n = (1, 0, 0).

With the same procedure, we get:

9 / 100



U =

 −1 0 0

0 1 0

0 0 1

⇒ [R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


, (12)

(C15ε1 + C25ε2 + C35ε3 + C45ε4)ε5+

(C16ε1 + C26ε2 + C36ε3 + C46ε4)ε6 = 0 ∀ε ⇐⇒
C15 = C25 = C35 = C45 = C16 = C26 = C36 = C46 = 0.

(13)

Rather surprisingly, this new symmetry condition does not give any
supplementary condition to those in (7) and (11).

⇒ the existence of 2 orthogonal planes of elastic symmetry is
physically impossible: only the presence of 1 or 3 mutually
orthogonal planes of symmetry is admissible.
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The class of orthotropic materials is very important, because a lot
of materials or structures belong to it.

An orthotropic material depends hence upon 9 distinct elastic
moduli and its matrix [C] looks like

[C ] =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66


. (14)

11 / 100



Axially symmetric bodies

There are only 4 possible cases of axial symmetries for crystals: the
2-, 3-, 4- and 6-fold axis of symmetry (say x3).

Let us begin with a 2-fold axis of symmetry; the covering operation
corresponds hence to a rotation of π about x3 →

U =

 −1 0 0

0 −1 0

0 0 1

⇒ [R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


, (15)

and we can observe that [R] is the same of the monoclinic case →
a 2-fold axis of symmetry coincides with a plane of symmetry.
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For a 3-fold axis of symmetry, the covering operation corresponds
to a rotation of 2π/3 about x3 →

U =

 −1
2

√
3

2 0

−
√

3
2 −1

2 0

0 0 1

⇒ [R] =



1
4

3
4

0 0 0 −
√

3
8

3
4

1
4

0 0 0
√

3
8

0 0 1 0 0 0

0 0 0 − 1
2
−
√

3
2

0

0 0 0
√

3
2

− 1
2

0√
3
8
−
√

3
8

0 0 0 − 1
2


(16)

and condition (1) gives 14 conditions on the components of [C ]:

C16 = C26 = C34 = C35 = C36 = C45 = 0,

C22 = C11, C55 = C44, C23 = C13, C24 = −C14,

C25 = −C15, C56 =
√

2C14, C46 =
√

2C15,

C66 = C11 − C12

(17)
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So, there are only 7 distinct elastic moduli:

[C ] =



C11 C12 C13 C14 C15 0

C11 C13 −C14 −C15 0

C33 0 0 0

C44 0 −
√

2C15

sym C44

√
2C14

C11 − C12


. (18)
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For a 4-fold axis of symmetry, the covering operation corresponds
to a rotation of π/2 about x3 →

U =

 0 1 0

−1 0 0

0 0 1

⇒ [R] =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 −1


. (19)

The result are 14 conditions different from the (17):

C14 = C24 = C34 = C15 = C25 = C35 =

C45 = C36 = C46 = C56 = 0,

C22 = C11, C55 = C44, C23 = C13, C26 = −C16

(20)
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This gives an elastic matrix [C ] still depending upon only 7 distinct
moduli, but different from the previous case:

[C ] =



C11 C12 C13 0 0 C16

C11 C13 0 0 −C16

C33 0 0 0

C44 0 0

sym C44 0

C66


. (21)
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The last case of 6-fold axis of symmetry has as covering operation
a rotation of π/3 about x3 →

U =

 1
2

√
3

2 0

−
√

3
2

1
2 0

0 0 1

⇒ [R] =



1
4

3
4

0 0 0
√

3
8

3
4

1
4

0 0 0 −
√

3
8

0 0 1 0 0 0

0 0 0 1
2
−
√

3
2

0

0 0 0
√

3
2

1
2

0

−
√

3
8

√
3
8

0 0 0 − 1
2


(22)

The result are 16 conditions:

C14 = C24 = C34 = C15 = C25 = C35 =

C45 = C16 = C26 = C36 = C46 = C56 = 0,

C22 = C11, C55 = C44, C23 = C13, C66 = C11 − C12

(23)

17 / 100



Finally, the elastic matrix [C ] depends upon only 5 moduli:

[C ] =



C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

sym C44 0

C11 − C12


. (24)
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Transversely isotropic bodies

A transversely isotropic body has an axis of cylindrical symmetry,
i.e. the covering operation is a rotation by any angle θ.

Many materials belong to this class: timber, fiber reinforced
composites, laminated steel, pack ice etc. but not crystals.

Proceeding in the usual way we get

U =

 c s 0

−s c 0

0 0 1

⇒ [R] =



c2 s2 0 0 0
√
2cs

s2 c2 0 0 0 −
√
2cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−
√
2cs

√
2cs 0 0 0 c2 − s2


(25)

c = cos θ, s = sin θ
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In this case we obtain exactly the same 16 conditions (23) ⇒
elastically, the 6-fold axis of symmetry is strictly identical to an
axis of cylindrical symmetry.

Hence, two such materials cannot be distinguished using only the
results of tests on stress or strain energy.

This should not be surprising, because this fact is in perfect
accordance with the Neumann’s principle, as the 6-fold axis of
symmetry is contained in the more general case of cylindrical
symmetry.

Finally, eq. (24) represents also the elastic matrix of a transversely
isotropic material, who has 5 distinct elastic moduli.

20 / 100



Isotropy

Isotropy is the complete symmetry: all the directions are
equivalent.

The conditions of isotropy could be found following the usual
procedure, imposing that eq. (1) is valid for any orthogonal
transformation [R].

However, this general approach, that can be followed using for
instance the Euler angles for expressing a generic [R], results to be
very cumbersome and computationally heavy.

A more direct approach is the following one: for a transversely
isotropic body, all the directions orthogonal to the axis of
symmetry, say x3, are equivalent.

In other words, fixing the axes of x1 and x2 is completely arbitrary.

We then suppose that, besides the equivalence of all the directions
in the plane perpendicular to x3, also x1 and x3 are equivalent →
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We then impose to a material described by a transversely isotropic
elastic matrix, eq. (24), this further equivalence, which is described
by

U =

 0 0 1

0 1 0

1 0 0

 ⇒ [R] =



0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0


. (26)

This gives 3 new conditions:

C13 = C12, C33 = C11, C44 = C66 (27)

22 / 100



This reduces the number of distinct elastic constants from 5 to
only 2:

[C ] =



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C11 − C12 0 0

sym C11 − C12 0

C11 − C12


(28)
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Because x1 is any direction, all the directions of the space are
equivalent.

This can be proved showing that the elastic matrix (28) is
insensitive to any change of basis leaving x2 unchanged, i.e.

U =

 c 0 s

0 1 0

−s 0 c

⇒ [R] =



c2 0 s2 0
√
2cs 0

0 1 0 0 0 0

s2 0 c2 0 −
√
2cs 0

0 0 0 c 0 −s
−
√
2cs 0

√
2cs 0 c2 − s2 0

0 0 0 s 0 c


(29)

which gives as only condition C44 = C11 − C12, already contained
in eqs. (23) and (27): nothing is added to the previous conditions
⇒ all the directions in any meridian plane are equivalent, i.e. the
body is isotropic.
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There is another, more elegant and direct way to prove that an
isotropic body depends upon only two distinct moduli:

• because of isotropy, the strain energy V can depend only upon
the invariants of ε and not upon its Cartesian components
([C ] is completely invariant for an isotropic body);

• for a linearly elastic body the Green’s formula σij =
∂V

∂εij
and

the Hooke’s law σij = Eijklεkl impose V to be a quadratic
form of ε;

• then, V can only be a linear combination of the square of the
first and second invariant of ε:

V =
1

2
c1I

2
1 + c2I2, (30)
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• with1

I1 = trε = εii , I2 =
tr2ε− trε2

2
=
εii εjj − εij εji

2
. (31)

• The third order invariant of ε, i.e. det ε, cannot enter in the
expression of V , because it is a cubic function of the εijs,
while V must be a quadratic function of the εijs.

• Then,

V =
1

2
[(c1 + c2)εii εjj − c2 εij εji ] (32)

• the two coefficients of the combination are exactly the two
independent elastic moduli.

1ε2 = εε = εijei ⊗ ej εhkeh ⊗ ek = εij εhk ej · eh(ei ⊗ ek) =
εij εhk δjh(ei ⊗ ek)→ trε2 = εij εhk δjhtr(ei ⊗ ek) = εij εhk δjhδik = εij εji .
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Some remarks about elastic symmetries

The results for [C ] are completely valid also for [S ]; this is not the
case with the Voigt’s notation, where for some symmetries, not all
the Sij have the same expression of the corresponding Cij .

Typically, some coupling components disappear in a symmetry
basis. The case of orthotropic bodies is emblematic: in the
orthotropic frame, the skyline of [C ] is exactly the same of an
isotropic body and the only coupling is the Poisson’s effect.

Nevertheless, this is no longer true in any other basis: in a generic
basis, all the anisotropic materials, regardless of their symmetries,
behave like a triclinic body, i.e. they have all the coupling terms
(generally speaking, their elastic matrix is complete, none of its
terms vanishes).
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The only exception to this fact is isotropy; in fact, for an isotropic
body the matrices [C ] and [S ] are completely invariant, i.e. their
only two distinct moduli are tensor invariants and the only possible
coupling is the Poisson’s effect.

This is the obvious consequence of the fact that all the directions
of the space are equivalent.

Physically, the fact that the least number of independent elastic
constants is two means that in a stressed elastic body there are, in
general, at least two distinct and independent deformation effects:
the direct one and the Poisson’s effect.
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Elasticity of crystals and elastic syngonies

Crystals have an elastic behavior that belongs to one of the cases
above or is a combination of these cases.

Examining their cases, allows us for entirely defining the 10 elastic
syngonies introduced above.

In particular, referring to the Voigt’s classification

1. classes 1 and 2 belong to the triclinic case, with 21 constants;
their matrix [C ] is like in eq. (4) and this crystal syngony
corresponds to the triclinic elastic syngony;

2. classes 3, 4 and 5 belong to the monoclinic case, with 13
constants; their matrix [C ] is like in eq. (8) and this crystal
syngony corresponds to the monoclinic elastic syngony;
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3. classes 6, 7 and 8 of the orthorhombic syngony belong to the
orthotropic case, with 9 constants; their matrix [C ] is like in
eq. (14) and the orthorhombic syngony corresponds hence
entirely to the orthotropic elastic syngony;

4. classes 12 and 13 of the trigonal syngony belong to the 3-fold
rotational symmetry case, with 7 constants; they have a
matrix [C ] as in eq. (18) and they constitute the trigonal
elastic syngony with 7 constants;

5. classes 17, 18 and 20 of the tetragonal syngony belong to the
4-fold rotational symmetry case, with 7 constants; their
matrix is like in eq. (21) and they constitute the tetragonal
elastic syngony with 7 constants;
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6. classes 9, 10 and 11 of the trigonal syngony are a combination
of the 3-fold rotational symmetry and the monoclinic
symmetry cases: if the plane of symmetry is the plane x1 = 0,
then the usual procedure applied to the matrix (18) gives
C15 = 0, and matrix (18) becomes

[C ] =



C11 C12 C13 C14 0 0

C11 C13 −C14 0 0

C33 0 0 0

C44 0 0

sym C44

√
2C14

C11 − C12


; (33)
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If it is x2 = 0 the plane of symmetry, then it is C14 = 0 and matrix
(18) becomes

[C ] =



C11 C12 C13 0 C15 0

C11 C13 0 −C15 0

C33 0 0 0

C44 0 −
√

2C15

sym C44 0

C11 − C12


; (34)

these cases constitute the trigonal elastic syngony with 6 constants;
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7. classes 14, 15, 16 and 19 of the tetragonal syngony are a
particular case of the orthotropic symmetry: they have
identical elastic properties along the axis x1 and x2, which
gives the three supplementary conditions
C22 = C11, C23 = C13, C55 = C44, so reducing matrix (14) to

[C ] =



C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

sym C44 0

C66


; (35)

these cases constitute the tetragonal elastic syngony with 6
constants;
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8. classes of the hexagonal syngony, from the 21 to the 27,
belong to the 6-fold rotational symmetry, with 5 constants;
together with transversely isotropic materials, that do not
exist as crystals, they form the axially-symmetric elastic
syngony, with [C ] as in eq. (24);

9. classes of the cubic syngony, from the 28 to the 32, are a
particular case of the orthotropic symmetry: they have
identical properties along the three axes, which gives the six
supplementary conditions C33 = C22 = C11, C23 = C13 =
= C12, C66 = C55 = C44, so reducing matrix (14) to

[C ] =


C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

sym C44 0

C44

 ; (36)

the cubic crystal syngony corresponds entirely with the cubic
elastic syngony;
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10. the last elastic syngony is the isotropic elastic syngony; of
course, no crystal syngonies belong to this case; nevertheless,
a huge number of materials have an isotropic behavior.

Though the texts on crystals and anisotropy usually forget to
consider the isotropic case, this one actually exists and for the
sake of completeness we prefer here to consider it as an elastic
syngony; the isotropic matrix (28) can be obtained as a
particular case of the cubic one, (36), when C44 = C11 − C12.
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The technical constants of elasticity

In practical applications, engineers usually prefer to replace the use
of the elastic stiffness matrix components by the so-called
technical elasticity constants or engineer moduli.

Technical constants quantify an effect, a direct or a coupling one,
whose mechanical meaning is immediate and that can be easily
identified and measured in simple laboratory tests, like for instance
unidirectional tension tests.

Of course, the set of technical constants must be equivalent to the
set of independent elastic moduli:

• the number of technical constants and distinct elastic moduli
must be the same, i.e. 21

• the technical constants must represent all the mechanical
effects in a stressed body
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The Young’s moduli

The three Young’s moduli generalize to anisotropy the analogous
isotropic modulus and are defined in a similar way:

Ei :=
σi
εi
, i = 1, 2, 3, σi 6= 0, σj = 0 for j 6= i , j = 1, ..., 6. (37)

As a consequence, from the Hooke’s inverse law we get the
relations (no summation over dummy indexes)

Sii = Ziiii =
1

Ei
, i = 1, 2, 3. (38)

The Young’s moduli measure the extension stiffness along the
direction of one of the frame axes.

Generally speaking, the three Young’s moduli are different, i.e. in
anisotropy the directions of the space have different stiffnesses.
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The shear moduli
Also in this case, the three shear moduli generalize to anisotropy
the isotropic concept of shear modulus:

Gij :=
σk
2εk

, i , j = 1, 2, 3, k = 4, 5, 6,

σk 6= 0, σh = 0 for h 6= k, h = 1, ..., 6.
(39)

To remark the discrepancy in the nomenclature of the Gijs: the
Kelvin notation is used for σk and εk but in Gij the suffixes are
those indicating the directions.

As a consequence, from the Hooke’s inverse law we get the
relations (no summation over dummy indexes)

2Skk = 4Zijij =
1

Gij
, i = 1, 2, 3, k = 4, 5, 6. (40)

The mechanical meaning of the Gij is completely analogous to that
of the Young’s moduli, but it concerns shear.
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Poisson’s coefficients
The definition of the Poisson’s coefficients or ratios in anisotropy is
quite similar to isotropy:

νij := −
εj
εi
, i , j = 1, 2, 3, σi 6= 0, σh = 0 for h 6= i , h = 1, ..., 6.

(41)
Like for shear moduli, the nomenclature makes use of the Kelvin’s
notation along with the tensorial one.
From the Young’s moduli definition, eq. (37), we get

εj = −νijεi = −νij
σi
Ei
, i , j = 1, 2, 3. (42)

Through the Hooke’s inverse law this gives (no summation over
dummy indexes)

Sji = Zjjii = −
νij
Ei

⇒ νij = −
Sji
Sii
, i , j = 1, 2, 3. (43)
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Finally, the symmetry of matrix [S ], consequence of the major
symmetries of Z, gives the reciprocity relations

νij
Ei

=
νji
Ej
, i , j = 1, 2, 3, (44)

which reduce the number of distinct Poisson’s coefficients from 6
to only 3.

Some remarks about the Poisson’s coefficients:

• they measure the Poisson’s effect, i.e. the deformation in a
direction transversal to that of the normal stress

• generally speaking, ν12 6= ν12 6= ν23 ⇒ the Poisson’s effect is
different in the different directions

• because the νijs depend upon the direction, it is possible that
in some directions νij ≤ 0

• some authors exchange the place of suffixes i and j in the
definition of νij
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Chentsov’s coefficients

The Chentsov’s coefficients µij ,kl play for shear the same role of
the Poisson’s coefficients:

µij ,kl :=
εij
εkl
, i , j , k , l = 1, 2, 3, i 6= j , k 6= l ,

σkl 6= 0, σpq = 0 for pq 6= kl , p, q = 1, 2, 3.
(45)

µij ,kl measures the Chentsov’s effect in the plane ij due to the
shear stress σkl , i.e. the ratio between the shear strain components
εij and εkl .

By the definition of the Gijs, eq. (39), it follows that (no
summation over dummy indexes)

εij = µij ,klεkl = µij ,kl
σkl

2Gkl
i , j , k, l = 1, 2, 3, (46)

and through the Hooke’s inverse law we get
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2Spq = 4Zijkl =
µij ,kl
Gkl

⇒ µij ,kl =
Spq
Sqq

, i , j , k , l = 1, 2, 3, p, q = 4, 5, 6,

(47)
with p that corresponds to the couple ij and q to kl according to
the scheme ii → i ∀i = 1, 2, 3; 12→ 6, 13→ 5, 23→ 4.

The symmetry of [S ] gives the reciprocity relations

µij ,kl
Gkl

=
µkl ,ij
Gij

, (48)

that, along with the minor symmetries of σ and ε reduce to only 3
the number of distinct Chentsov’s coefficients.

Finally, the remarks done for the νijs can be rephrased verbatim for
the µij ,kls.
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Coefficients of mutual influence of the first type
They characterize the normal strain εii due to the shear σjk (no
summation over dummy indexes):

ηi ,jk :=
εii

2εjk
i , j , k = 1, 2, 3, j 6= k , σjk 6= 0,

σpq = 0 for pq 6= jk, p, q = 1, 2, 3.
(49)

By the definition of the Gijs, eq. (39), it follows that

εii = 2ηi ,jkεjk = ηi ,jk
σjk
Gjk

, (50)

and through the Hooke’s inverse law we get

√
2Sip = 2Ziijk =

ηi ,jk
Gjk

⇒ ηi ,jk =
Sip√
2Spp

, i , j , k = 1, 2, 3, p = 4, 5, 6,

(51)
p corresponds to the couple jk according to the usual rule.

For the symmetry of σ and ε, the exchange of suffixes j and k has
no effects, so the number of distinct coefficients is only 9.
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Coefficients of mutual influence of the second type
They characterize the shear strain εij due to the normal stress σkk
(no summation over dummy indexes):

ηij ,k :=
2εij
εkk

i , j , k = 1, 2, 3, i 6= j , σkk 6= 0,

σpq = 0 for pq 6= kk, p, q = 1, 2, 3.

(52)

By the definition of the Ei s, eq. (37), it follows that

2εij = ηij ,kεkk = ηij ,k
σkk
Ek

, (53)

and through the Hooke’s inverse law we get
√

2Spk = 2Zijkk =
ηij ,k
Ek

⇒ ηij ,k =
√

2
Spk
Skk

, i , j , k = 1, 2, 3, p = 4, 5, 6,

(54)
p corresponds to the couple ij according to the known rule.

Like for the coefficients of the first type, the symmetries of σ and
ε reduce the number of distinct coefficients of the second type to
only 9.
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The coefficients of the second type are not independent from those
of the first type.

In fact, the symmetry of [S ] gives immediately the reciprocity
relations

ηij ,k
Ek

=
ηk,ij
Gij

, i , j , k = 1, 2, 3. (55)

So the use of the coefficients of the first or of the second type is
arbitrary and equally valid.

Also for the coefficients of the first and second type can be
repeated almost verbatim the remarks done about the other
coefficients.
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Some remarks about the technical constants

The relations between a technical constant and the corresponding
component of Z, given in the previous Sections, are valid
regardless of the notation used, i.e. they are the same also with
the Voigt’s notation.

On the contrary, the relations with the components Sij depends
upon the notation, and those found above are not completely
identical with the Voigt’s notation.

It is possible, of course, to express also the components of [C ] as
functions of the technical constants; this necessitates the inversion
of [S ] and in the most general case it gives so complicate and long
expressions that it is impossible to write them.

Nevertheless, in the important case of orthotropic materials the
transformation is rather simple.
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In fact, in the orthotropic frame, the inverse of matrix [S ], which is
perfectly analogous to matrix (14), is given by

Cii =
SjjSkk − S2

jk

S
=

1− νjkνkj
∆

Ei , i , j , k = 1, 2, 3, i 6= j 6= k ,

Cij =
SikSkj − SijSkk

S
=
νij + νikνkj

∆
Ej , i , j , k = 1, 2, 3, i 6= j 6= k ,

C44 = 2G23, C55 = 2G31, C66 = 2G12

(56)

with

S = S11S22S33 − S11S
2
23 − S22S

2
13 − S33S

2
12 + 2S12S23S13,

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν32ν21ν13.
(57)
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It is also worth to specify these results for the isotropic case

[C ] =



(1−ν)E
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν)

0 0 0
(1−ν)E

(1−2ν)(1+ν)
νE

(1−2ν)(1+ν)
0 0 0

(1−ν)E
(1−2ν)(1+ν)

0 0 0

E
1+ν

0 0

sym E
1+ν

0
E

1+ν


, (58)

[S ] =



1
E
− ν

E
− ν

E
0 0 0

1
E

− ν
E

0 0 0
1
E

0 0 0
1+ν
E

0 0

sym 1+ν
E

0
1+ν
E


. (59)

To remark that with the Voigt’s notation one should have
E/2(1 + ν) in place of E/(1 + ν) for C44,C55 and C66, as well as
2(1 + ν)/E for S44,S55 and S66.
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Bounds on the elastic constants
Elastic constants are bounded because of the physical fact that the
deformation of an elastic body Ω cannot produce energy: the
overall work Lext done by the applied forces must be positive.

From the Clapeyron’s Theorem

Lext = 2V = 2

(
1

2

∫
Ω
σ · ε dΩ

)
, (60)

we get the condition that the strain energy V must be positive.

Assuming the strain as independent field over Ω, then the overall
condition is

V =
1

2

∫
Ω
σ · ε dΩ > 0 ∀ε 6= O. (61)

This constraint on the deformation of an elastic body is a strong
condition.

By a procedure of limit towards small volumes, it is easy to see
that it must be true also locally, i.e. ∀p ∈ Ω.
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The local form of (61) injected into the Hooke’s law gives the
condition

dV =
1

2
σ · ε =

1

2
ε · Eε > 0 ∀ε 6= O, (62)

from which the bounds on the elastic constants can be obtained.

Eq. (62) is the mathematical condition corresponding to the
thermodynamical fact that no energy can be produced deforming
an elastic body: the elasticity stiffness tensor E must be positive
definite.

If the σ is taken as independent field over Ω in place of ε, we get a
similar restriction on the stress energy and finally the condition
that the elasticity compliance tensor Z must be positive definite.

Of course, the two approaches give in the end the same results for
the elastic constants.

Working with the Cij (the final results are easily transferred to the
Eijkl), we are concerned with a fundamental question: when a
matrix is positive definite?
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Positive definiteness of the elastic matrices

Using [C ], condition (62) becomes

1

2
{ε}>[C ]{ε} > 0 ∀{ε} 6= {0}, (63)

stating the positive definiteness of matrix [C ].

Mathematically, the problem is clear:
[C ] = [C ]> ⇒ λi ∈ R, i = 1, ..., 6 (Spectral Theorem) → and

1

2
{ε}>[C ]{ε} > 0 ∀{ε} 6= {0} ⇐⇒ λi > 0 ∀i = 1, ..., 6. (64)

The above result is almost useless (the Laplace’s equation is of
degree 6!): no analytic expression of the λi can be get → no
bounds on the Cij !.
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Nevertheless, a first qualitative result is that the number of
conditions to be put on the Cijs is 6.

As the distinct components are, in the most general case, 21, the
conditions on the Cijs are not necessarily simple bounds but at
least some of them are necessarily relations among some of the
components.

Also, for the hexagonal, cubic and isotropic syngonies the number
of conditions is redundant with respect to the distinct elastic
constants ⇒ some of them have lower and upper bounds and/or
some of the bounds are redundant (this, anyway, can be true also
for other syngonies).

An approach different from that using the eigenvalues must be
followed; there are two possibilities: a mathematical, using an
almost unknown theorem, and a mechanical one.

The mathematical one first!

52 / 100



A (rather unknown) mathematical approach
This approach is completely general and feasible. We need to
introduce the following definitions and theorems of matrix algebra.

A principal minor of a matrix [A] is the determinant of the
sub-matrix extracted from [A] removing an equal number of rows
and columns having the same indices, i.e. preserving the leading
diagonal.

A leading principal minor of order r is the determinant of a
principal r × r sub-matrix whose rows and columns are the first r
rows and columns of [A].

Hence, a n × n matrix has n leading principal minors.

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,
 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,
 A11 A12 A13

A21 A22 A23

A31 A32 A33


(65)
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We need the following two theorems:

Theorem (necessary condition for a symmetric matrix to be
positive definite)

All the principal minors of a positive definite n × n symmetric
matrix [A] are positive.

Theorem (necessary and sufficient condition for a symmetric
matrix to be positive definite)

For a n × n symmetric matrix [A] to be positive definite it is
necessary and sufficient that its n leading principal minors are all
positive.
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The six principal minors of [C ] are

M1 = C11, M2 =

∣∣∣∣∣ C11 C12

C12 C22

∣∣∣∣∣ , M3 =

∣∣∣∣∣∣∣
C11 C12 C13

C12 C22 C23

C13 C23 C33

∣∣∣∣∣∣∣ ,

M4 =

∣∣∣∣∣∣∣∣∣∣
C11 C12 C13 C14

C12 C22 C23 C24

C13 C23 C33 C34

C14 C24 C34 C44

∣∣∣∣∣∣∣∣∣∣
, M5 =

∣∣∣∣∣∣∣∣∣∣∣∣

C11 C12 C13 C14 C15

C12 C22 C23 C24 C25

C13 C23 C33 C34 C35

C14 C24 C34 C44 C45

C15 C25 C35 C45 C55

∣∣∣∣∣∣∣∣∣∣∣∣
,

M6 = det[C ].

(66)
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Contrarily to the eigenvalues, it is always possible to explicit the
above expressions and hence the 6 conditions

Mi > 0, i = 1, ..., 6. (67)

That is why the use of Theorem 2 is more interesting than
condition (64), though to write down the 6 conditions in the most
general case of a triclinic material gives very long expressions.

Simpler expressions can be obtained for different elastic syngonies
(redundant bounds are omitted):

• orthotropic elastic syngony, eq. (14):

Cii > 0, i = 1, 4, 5, 6,

C11C22 − C 2
12 > 0,

C11C22C33 − C33C
2
12 − C11C

2
23−

C22C
2
13 + 2C12C13C23 > 0;

(68)
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• tetragonal elastic syngony with 6 constants, eq. (35):

C44 > 0,

C66 > 0,

C 2
11 − C 2

12 > 0,

(C11 − C12)
[
C33(C11 + C12)− 2C 2

13

]
> 0;

(69)

• axially symmetric elastic syngony, eq. (24):

C44 > 0,

C 2
11 − C 2

12 > 0,

(C11 − C12)
[
C33(C11 + C12)− 2C 2

13

]
> 0;

(70)
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• cubic elastic syngony, eq. (36)

C44 > 0,

C11 − C12 > 0,

C11 + 2C12 > 0;

(71)

• isotropic elastic syngony, eq. (28):

C11 − C12 > 0,

C11 + 2C12 > 0.
(72)
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A (better known) mechanical approach
This method is based upon the fact that V must be positive for
each possible choice of the strain field ε.

This allows for choosing particularly simple strain fields, giving
some direct, simple results. Let us see how (no summation over
dummy indexes).

Chose a field {ε} with only one component εi 6= 0. Then,

dV > 0 ⇐⇒ Cii > 0, i = 1, ..., 6; (73)

we get hence 6 necessary conditions, so they do not constitute a
set of necessary and sufficient conditions for the positiveness of V .

Nevertheless, they give us a precious information: all the moduli
responsible for the direct effects are strictly positive.

Using the stress energy instead of the strain energy, it is
immediately recognized that it is also:

Sii > 0 ∀i = 1, ..., 6. (74)
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Bounds on the technical constants

The results of eqs. (38), (40) and (74) give immediately

Ei > 0, Gij > 0 ∀i , j = 1, 2, 3 : (75)

all the Young’s and shear moduli are strictly positive quantities,
result that is valid for any kind of elastic syngony.

To these necessary conditions some other relations for the
technical constants can be added.

First of all, let us consider a spherical state of stress; it is then easy
to see that

{σ} = σ{I} ⇒ {σ}>[S ]{σ} > 0 ⇐⇒
S11 + S22 + S33 + 2(S13 + S32 + S21) > 0.

(76)
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Replacing in the above result the expressions of the Sijs from eqs.
(38) and (43) gives the condition

1− 2ν12

E1
+

1− 2ν23

E2
+

1− 2ν31

E3
> 0. (77)

This result is valid regardless of the elastic syngony; for the cubic
and isotropic syngonies it becomes the well known bound ν < 1/2
on the Poisson’s coefficient.

A simpler but rougher estimation can be obtained from bound (77)
(see Lekhnitskii):

3− 2(ν12 + ν23 + ν31)

min{E1,E2,E3}
>

1− 2ν12

E1
+

1− 2ν23

E2
+

1− 2ν31

E3
> 0 ⇒

ν12 + ν23 + ν31 <
3

2
.

(78)
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Some other necessary conditions can be given expressing the Cii in
terms of the technical parameters.

For the triclinic syngony the calculations are too complicate, while
for the orthotropic syngony this is possible.

The supplementary bounds can be found expressing the (73) as
functions of the technical constants through eq. (56) and taking
into account the positivity of the Young’s moduli, eq. (75):

1− νijνji > 0 ∀i , j = 1, 2, 3;

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν32ν21ν13 > 0.
(79)

Condition (79)2 can be transformed to

ν32ν21ν13 <
1

2

(
1− ν2

32

E2

E3
− ν2

21

E1

E2
− ν2

13

E3

E1

)
<

1

2
. (80)
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Through the reciprocity conditions on the Poisson’s coefficients,
eq. (44), conditions (79)1 can be written also as

|νij | <

√
Ei

Ej
∀i , j = 1, 2, 3, (81)

or equivalently

|Sij | <
√

SiiSjj ∀i , j = 1, 2, 3. (82)

Some remarks:

• the bounds concern frame dependent quantities, and of course
they are more easily written in a frame composed by
symmetry directions. Then, the only, general, necessary and
sufficient conditions are the (67), that can always be written
and used in numerical applications, e.g. for checking the
validity of the results of experimental tests;
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• in the case of orthotropic materials, a set of conditions on the
technical constants can be easily written, but it is still
questionable whether or not it constitutes a set of necessary
and sufficient conditions for the positivity of the strain energy,
a point never treated in the literature;

• bounds on the Chentsov’s and mutual influence coefficients
are completely unknown in the literature;

• In the case of isotropic materials, the conditions of positivity
of the strain energy reduce to the well known 3 bounds on E
and ν

E > 0, −1 < ν <
1

2
(83)
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• rather surprisingly, if the bounds are written for the two
distinct components of [C ], C11 and C12, the bounds are only
2, see eq. (72):

C11 − C12 > 0, C11 + 2C12 > 0 (84)

• the same happens when the isotropic law is written under the
form of the Lamé’s equations

σ = 2µε+ λtrεI : (85)

the only two bounds on the Lamé’s constants λ and µ are

µ > 0, 2µ+ 3λ > 0, (86)

that corresponds exactly to bounds (84);
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• this shows that the number of necessary and sufficient
conditions for the strain energy to be positive depends upon
the choice of the elastic constants and that, anyway, it is
quite hard to establish a priori its value, whose maximum
remains anyway 6;

• all the bounds above are written with frame dependent
quantities (exception made for isotropy). In particular,
conditions (68) to (71) are valid exclusively in the symmetry
frame where the respective matrices [C ] have been written;

• we will see that for the plane case it is possible, with the polar
formalism, to give completely invariant necessary and
sufficient bounds, i.e. bounds established on tensor invariants,
which are not yet known for the general 3D case.
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An observation about the decomposition of V
Let us consider a point which is true at least for isotropic materials
but often thought as generally true also for other elastic syngonies:
is it possible to decompose the strain energy into spherical and
deviatoric parts?

In other words, we ponder whether or not it is always possible to
write

V = Vsph + Vdev , (87)

where Vsph, the spherical part of V is produced exclusively by the
spherical part of ε and by its corresponding part of σ, i.e.

Vsph =
1

2
εsph · Eεsph, (88)

and Vdev , the deviatoric part of V is produced exclusively by the
deviatoric part of ε and by its corresponding part of σ, i.e.

Vdev =
1

2
εdev · Eεdev . (89)
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Mechanically, such a decomposition means that V can be
considered as the sum of two parts:

• Vsph, due to volume changes not accompanied by shape
changes

• Vdev , produced by isochoric shape changes

This decomposition is, for instance, at the basis of the
Hüber-Hencky-von Mises criterion, where the only Vdev is
considered to be responsible of yielding.

It is always possible to decompose σ and ε into a spherical and a
deviatoric part

σ = σsph + σdev , σsph =
1

3
trσ I, σdev = σ − σsph,

ε = εsph + εdev , εsph =
1

3
trε I, εdev = ε− εsph,

(90)
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Any spherical part is orthogonal to any deviatoric part:

σsph · εdev =
1

3
trσ I · (ε− 1

3
trε I) =

1

3
trε trσ − 1

3
trε trσ = 0,

σdev · εsph = (σ − 1

3
trσ I) · 1

3
trε I =

1

3
trε trσ − 1

3
trε trσ = 0.

(91)

Using decomposition (90) we have

V =
1

2
ε · Eε =

1

2
(εsph + εdev ) · E(εsph + εdev ) =

1

2
εsph · Eεsph +

1

2
εdev · Eεdev +

1

2
εsph · Eεdev +

1

2
εdev · Eεsph

(92)

Decomposition (87) is true ⇐⇒

εsph · Eεdev = 0 ⇒ tr
[
ε>sph(Eεdev )

]
= 0 ∀ε. (93)
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In fact, whenever eq. (93) is satisfied, for the definition of E> it is

εdev · Eεsph = E>εdev · εsph = εsph · Eεdev , (94)

because E = E>. This result shows that the two mixed terms in
(92) are identical.

Through (90), condition (93) can be written as

tr

[
1

3
trε I(Eεdev )

]
= 0 ∀ε ⇐⇒ tr(Eεdev ) = 0. (95)

The components of E must satisfy eq. (95) for the decomposition
(87) to be possible. It can be rewritten as

tr

[
E
(
ε− 1

3
trε I

)]
= 0 ⇒ 3tr(Eε)−trε tr(EI) = 0 ∀ε. (96)
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Actually, condition (93) corresponds to impose that

σdev = Eεdev , σsph = Eεsph, (97)

as it can be easily recognized.

Condition (96) can be written by components:

Ehhkkεii − 3Ejjpqεpq = 0 ∀εmn, i , j , h, k , p, q,m, n = 1, 2, 3. (98)

Generally speaking, this quantity does not vanish for any possible
choice of ε.

As a consequence, for a generic anisotropic material decomposition
of the strain energy into a spherical and deviatoric part is not
possible.
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Nevertheless, it can be checked that for the cubic syngony eq. (98)
is always satisfied.

In fact, for an orthotropic material condition (98) becomes

1

3
[E1111 (2ε11 − ε22 − ε33) + E2222 (2ε22 − ε11 − ε33) +

E3333 (2ε33 − ε22 − ε11)]+

2

3
[E1122 (ε11 + ε22 − 2ε33) + E1133 (ε11 + ε33 − 2ε22) +

E2233 (ε22 + ε33 − 2ε11)] = 0,

(99)

condition which is not yet satisfied, generally speaking, but which
is always satisfied when

E1111 = E2222 = E3333, E1122 = E2233 = E1133, (100)

i.e. by cubic materials and a fortiori by isotropic materials.
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Determination of symmetry planes
The classification in elastic syngonies presupposes that, for a given
material, the existing equivalent directions are known, so as to
write E, or equivalently [C ], in a symmetry frame.

But when a material is completely unknown, the independent
measures to be done in experimental tests to characterize the
material are as much as 21 (impossible!), [C ] is a full matrix and
the possible symmetry planes remains unknown.

The problem is hence: given a general matrix [C ], is it possible to
determine if some planes of symmetry exist and which they are?

We will see that in 2D it is very simple to determine the symmetry
directions using the polar formalism.

In the 3D case, the problem is much more complicate; it has been
solved by Cowin and Mehrabadi in two works (1987-89),
successively completed by Ting (1996).

We give here a brief account of these results.
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Be n and m∈ V, |n| = |m| = 1, m · n = 0, with n orthogonal to a
symmetry plane for a material whose elastic tensor is E.

Consider the following second-rank symmetric tensors: V = EI, W
the acoustic2 tensor relative to the basis direction ep, X and Y the
acoustic tensors relative to n and m, respectively.3 Then:

Theorem
The following statements are equivalent (λi ∈ R, i = 1, ..., 6):

1. the material has a plane of symmetry whose normal is n;

2. Vn = λ1Yn = λ2n;

3. Wn = λ3Yn = λ4n;

4. Xn = λ5Yn = λ6n.

2The acoustic or Green-Christoffel tensor Au relative to the direction u is
the unique tensor such that Auw = E(w ⊗ u)u ∀w ∈ V.

3It is simple to verify that

V = EI = Eikqqei⊗ek , W = Eipkpei⊗ek , X = Eilkmnlnmei⊗ek , Y = Eijkhmjmhei⊗ek .
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Proof. Without loss of generality, let us suppose that n = e1 and
m = cos θe2 + sin θe3.

When n is an eigenvector of V, W, X or Y then

Vn = λvn → Ei1qqei = λve1,

Wn = λwn → Eip1pei = λwe1,

Xn = λxn → Ei111ei = λxe1,

Yn = λyn →
[Ei212 cos2 θ + Ei313 sin2 θ+

(Ei213 + Ei312) sin θ cos θ]ei = λye1 ∀θ.

(101)

For i = 1, the above results give the values of the respective
eigenvalues, but for i = 2, 3 we get, respectively,
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E21qq = E31qq = 0,

E2p1p = E3p1p = 0,

E2111 = E3111 = 0,

E2212 cos2 θ + E2313 sin2 θ + (E2213 + E2312) sin θ cos θ =

E3212 cos2 θ + E3313 sin2 θ + (E3213 + E3312) sin θ cos θ = 0 ∀θ.
(102)

Passing to the Cijs (for the sake of convenience)

C15 + C25 + C35 = C16 + C26 + C36 = 0,

C15 + C35 +
C46√

2
= C16 + C26 +

C45√
2

= 0,

C15 = C16 = 0,

C25 = C26 = C35 = C36 = C45 = C46 = 0.

(103)
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If the material has x1 = 0 as unique plane of symmetry, it belongs
to the monoclinic syngony and its matrix [C ] is

[C ] =



C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

sym C55 C56

C66


, (104)

that is:

C15 = C16 = C25 = C26 = C35 = C36 = C45 = C46 = 0 (105)

It is then clear that conditions (103)1,4, (103)2,4 or (103)3,4 imply
(105) and vice-versa.�

This theorem states that the material has a plane of symmetry
whose normal is n if and only if n is the eigenvector of Y and of at
least another tensor among V, W or X.
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Physical interpretations

A physical interpretation of Theorem 3 is possible in the frame of
the acoustics theory:

• X is the acoustic tensor for the elastic waves that propagate
in the direction of n

• an elastic wave is a longitudinal wave whenever n is an
eigenvector of X

• in such a case, n is called a specific direction of X

• in an anisotropic material there exist always at least 3
different specific directions (Kolodner, 1966)

• when n is an eigenvector of Y, then the wave is transversal, m
is the direction of the wave propagation and n is called the
specific axis

• then conditions (103)3,4, i.e. when n is an eigenvector of X
and Y, are equivalent to say that n is at the same time a
specific direction and a specific axis.
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A statical interpretation has also been given by Hayes and Norris
(1991).

It traduces the above acoustics conditions into equivalent statical
conditions.

They have been resumed in the following

Theorem
A material has a plane of symmetry if and only if at least two
orthogonal planes of pure shear exist, sharing a common shear
direction which is the normal to the plane of symmetry.
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Curvilinear anisotropy

When in a body there are directions that are not parallel but
mechanically equivalent, then the body possesses a curvilinear
anisotropy.

It is still possible to write the Hooke’s law in a rectangular
coordinate system.

However, in doing so, the components of [C ] or [S ] are no more
constants, but vary with the position according to the variation of
the coordinate directions with respect to the equivalent directions.

Be {ξ, η, ζ} the coordinate directions of the curvilinear coordinates
that coincide with the mechanically equivalent directions. With
self-evident meaning of the symbols, the Hooke’s law can be
written in the curvilinear coordinate system as
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

σξξ

σηη

σζζ√
2σηζ√
2σζξ√
2σξη


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66





εξξ

εηη

εζζ√
2εηζ√
2εζξ√
2εξη


, (106)

where the Cijs are constants.

In some cases of non homogenous bodies, the Cijs can depend
upon the coordinates {ξ, η, ζ}.

Of course, if some type of elastic symmetry is present in the body,
then some of the Cijs can be null, as in the ordinary cases of the
elastic syngonies.

A special case of curvilinear anisotropy is that of cylindrical
anisotropy: the body has an axis of symmetry, all the directions
orthogonal or parallel to it are equivalent, as well as all the
directions orthogonal to them.
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Using a customary set of cylindrical coordinates {r , θ, z}, with z
the axis of symmetry, the Hooke’s law is

σrr

σθθ

σzz√
2σθz√
2σzr√
2σrθ


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66





εrr

εθθ

εzz√
2εθz√
2εzr√
2εrθ


. (107)
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A special case of cylindrical anisotropy is that of cylindrical
orthotropy: each plane which is radial, tangential or orthogonal to
the symmetry axis is a plane of symmetry.

In such a case matrix [C ] in eq. (107) is simplified:

σrr

σθθ

σzz√
2σθz√
2σzr√
2σrθ


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66





εrr

εθθ

εzz√
2εθz√
2εzr√
2εrθ


. (108)

It is worth noting that cylindrical orthotropy is not equivalent to
transverse isotropy (that in fact depends upon only 5 constants,
not upon 9).
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Actually, transverse isotropy is a special case of cylindrical
orthotropy, because not only the radial and tangential directions
are equivalent, but all the directions lying in a plane orthogonal to
the symmetry axis are equivalent directions.

Some examples of cylindrical anisotropy are:

• some types of wood with regular yearly cylindrical layers

• metallic pipes, for their manufacturing process

• a circular reinforced concrete slab with steel bars disposed
radially and circumferentially

• a bicycle wheel, when homogenized

• a circular stone arch
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In spherical anisotropy there is a center of symmetry and all the
rays emanating from and the tangents to parallels and meridians
are equivalent directions.

Using a standard spherical coordinate systems {ρ, θ, ϕ}, where the
directions of the coordinate axes coincide with the equivalent
directions, eq. (106) becomes

σρρ

σθθ

σϕϕ√
2σθϕ√
2σϕρ√
2σρθ


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66





ερρ

εθθ

εϕϕ√
2εθϕ√
2εϕρ√
2ερθ


. (109)
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The case of spherical orthotropy is get when each meridian and
tangential plane is a plane of symmetry as well as each plane
orthogonal to these two planes:

σρρ

σθθ

σϕϕ√
2σθϕ√
2σϕρ√
2σρθ


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66





ερρ

εθθ

εϕϕ√
2εθϕ√
2εϕρ√
2ερθ


. (110)

To remark the difference between isotropy and spherical
orthotropy: isotropy is a special case of spherical orthotropy,
because all the directions are equivalent, not only those emanating
from the centre of symmetry.

This reduces the number of independent elastic constants from 9
to only 2.
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Some examples of anisotropic materials
We give for some materials the matrix [C ] (in GPa) and the
3D-directional diagrams of some of the technical constants.

These last have been obtained as the value get by the constant on
the axis of x ′1 of a frame {x ′1, x ′2, x ′3} rotated with respect to the
frame {x1, x2, x3} where the matrix [C ] is known.

	
  

x2 

x1 

x3 

x1’ 

x2’ 

x3’ 

0 
θ 

ϕ 

Figure: Scheme of the frame rotation for tracing the elastic constants
3D-graphics.
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The rotation matrix [R] is obtained through a rotation tensor U
that is

U =

 sinϕ cos θ sinϕ sin θ cosϕ

− sin θ cos θ 0

− cosϕ cos θ − cosϕ sin θ sinϕ

 . (111)

The compliance matrix [S ′] in the rotated frame can be easily
obtained:

{ε} = [S ]{σ} → [R]>{ε′} = [S ][R]>{σ′} →
{ε′} = [R][S ][R]>{σ′} ⇒ [S ′] = [R][S ][R]>.

(112)

Once the S ′
ijs known, the technical constants can be easily

calculated.
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Through eqs. (111) and (112) it can be shown that for the
materials of the hexagonal elastic syngony it is always

S14 = S16 = S24 = S26 = S34 = S36 = S45 = S56 = 0. (113)

For these materials, the only Chentsov’s and mutual influence
coefficients that are not identically null are

µ23,12, η1,31, η2,31, η3,31, η31,1, η31,2, η31,3 (114)
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Anorthite (CaAl2Si2O8)
Crystal syngony: Monoclinic, N = 13, plane of symmetry: x2 = 0.

[C ] =



124 66 50 0 −26.9 0

205 42 0 −9.9 0

156 0 −25.4 0

48 0 −2

sym 80 0

84



E1 G12 ν12

µ23,12 η1,31 η31,1
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Perovskite (CaTiO3)
Crystal syngony: Orthorhombic, N = 9.

[C ] =



515 117 117 0 0 0

525 139 0 0 0

435 0 0 0

48 0 0

sym 404 0

350



E1 G12 ν12

µ23,12 η1,31 η31,1
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Dolomite (CaMg(CO3)2)
Crystal syngony: Trigonal, N = 7. (* estimated)

[C ] =



196.6 64.4 54.7 31.7 25.3∗ 0

196.6 54.7 −31.7 −25.3∗ 0

110 0 0 0

83.2 0 −35.84

sym 83.2 44.8

132.2



E1 G12 ν12

µ23,12 η1,31 η31,1
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Calcium Tungstate (CaWO4)
Crystal syngony: Tetragonal, N = 7.

[C ] =



141 61 41 0 0 1.9

141 41 0 0 −1.9

125 0 0 0

67.4 0 0

sym 67.4 0

81.4



E1 G12 ν12

µ23,12 η1,31 η31,1
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Quartz (SiO2)
Crystal syngony: Trigonal, N = 6.

[C ] =



86.8 7.1 14.4 24.3 0 0

86.8 14.4 −24.3 0 0

107.5 0 0 0

116.4 0 0

sym 116.4 34.4

79.7



E1 G12 ν12

µ23,12 η1,31 η31,1
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Zircon (ZrSiO4)
Crystal syngony: Tetragonal, N = 6.

[C ] =



424 70 149 0 0 0

424 149 0 0 0

489 0 0 0

262 0 0

sym 262 0

96



E1 G12 ν12

µ23,12 η1,31 η31,1
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Ice (H2O)
Crystal syngony: Hexagonal, N = 5.

[C ] =



13.5 6.5 6 0 0 0

13.5 6 0 0 0

15 0 0 0

6 0 0

sym 6 0

7



E1 G12 ν12

µ23,12 η1,31 η31,1
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Titanium Boride (TiB2)
Crystal syngony: Hexagonal, N = 5.

[C ] =



648.3 404.2 317.7 0 0 0

648.3 317.7 0 0 0

439.3 0 0 0

500 0 0

sym 500 0

244.1



E1 G12 ν12

µ23,12 η1,31 η31,1
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Pine Wood
Transversely isotropic, N = 5.

[C ] =



0.45 0.11 0.13 0 0 0

0.45 0.13 0 0 0

10.1 0 0 0

1.5 0 0

sym 1.5 0

0.34



E1 G12 ν12

µ23,12 η1,31 η31,1
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Gold (Au)
Crystal syngony: Cubic, N = 3.

[C ] =



191 162 162 0 0 0

191 162 0 0 0

191 0 0 0

84 0 0

sym 84 0

84



E1 G12 ν12

µ23,12 η1,31 η31,1
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Diamond (C)
Crystal syngony: Cubic, N = 3.

[C ] =



1079 124 124 0 0 0

1079 124 0 0 0

1079 0 0 0

1156 0 0

sym 1156 0

1156



E1 G12 ν12

µ23,12 η1,31 η31,1
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