

International Doctorate in Civil and Environmental Engineering

DOCTORAL COURSE - A.Y. 2020/21

Introduction to least squares adjustment and statistical methods

Teacher: Andrea Masiero

University of Florence

Email: andrea.masiero@unifi.it

Calendar	
05/05/2021 – 14:00-16:00	Basics of statistics, estimation and statistical error characterization
12/05/2021 – 14:00-16:00	Linear algebra review
19/05/2021 – 14:00-16:00	Principal component analysis
26/05/2021 – 14:00-16:00	Mathematical modeling, estimation examples, error propagation
03/06/2021 – 14:00-16:00	Linear and conditional least squares adjustment
09/06/2021 – 14:00-16:00	Nonlinear optimization and nonlinear least squares adjustment
16/06/2021 – 14:00-16:00	Examples of LS adjustment: triangulation and trilateration.
23/06/2021 – 10:00-12:00	Monte Carlo methods and bootstrap
Total	16 hours – 8 credits

Program

This course provides an introduction to statistical error modelling, estimation theory, linear and nonlinear least squares adjustment, with a review of certain numerical and statistical methods related to the mentioned subjects. Topics that the course considers include: sources and types of measurement errors, basic hypothesis of error theory, review of basics of linear algebra and univariate/multivariate statistics, error propagation, linear least-squares adjustment, constrained least-squares adjustment, nonlinear least-squares adjustment, numerical methods and considerations, examples of least-squares adjustment (e.g. triangulation and trilateration), principal component analysis, introduction to Monte Carlo methods and bootstrap.

